
y.-J _(__?-_-o ,

g/f y _-_..f

,0
0

I
N

Z

7Z

Z_C

ai

u_

_uu

--_._

I

I

1 z
II

==

I

P

_°o

_0

@,

"- |

I= _ _

A Survey of Computational

Learning Theory

PHILIP LAIRD

AI RESEARCH BRANCH, MAIL STOP 244--17

NASA AMEs RESEARCH CENTER

MOFFETT FIELD, CA 94035

---_=:

:___._7_
.... ,,, .._.

- -=4_=--

__ Ames Research Center

:.i'____]ficialIntelligence Research Branch

Technical Report RIA-89-01-07-0

January, 1989

, ::: . ,: :

I II _ _ I_ _ i _

A Survey of Computational Learning Theory

Philip D. Laird

Artificial Intelligence Research Branch
NASA Ames Research Center

Moffett Field, California 94035

1 Overview

I write this survey mainly for readers interested in machine learning, whose research

methodology includes some amount of mathematical modeling. The scope of the

article is limited to research that has a formal foundation and pertains to the problem

of making computers "learn", whatever that means. I hope that readers new to the

field find a roadmap to the recent literature, and that researchers already immersed

in the field may gain some perspective aboUt the relationship of their work to that of

their colleagues.

Like most surveys, this article contains no new results, except perhaps for relat-

ing research that previously had not been compared. Most of the work is generally

available in the published literature, or at least in technical research reports still

available from the sponsoring institutions. The remarks in this introduction are my

own thoughts and are not intended to express any consensus on the part of learning

researchers.

The Nature of Learning. In thinking about the content and structure of this

survey, I have once again been forced to confront the annoying question: what is

learning? Many programs and models purport to learn in some fashion, but like

intelligence, learning is easier to recognize than to define. The _Potter Stewart" mode

of concept definition ("I know it when I see it" } is of no help when an author is forced

to declare his prejudices, as I am now.

What is the nature of a program that learns? Most programs P compute a relation:

given z, output a value or set of values y = P(z) with a specified property. We assume

that the initial state of the program is always the same at the beginning of each

computation, so that regardless of any previous computations, the output values P(x)

depend only on x. A learning program, however, also modifies its initial state: starting

in state q, the result of the computation P(xlq) is a sequence of values y and a new

state qt from which subsequent computations will begin. It is this progression of states

of the program that interests us, that is the result of learning. For cumulative changes

of state to be considered learning, there must also be improvement in the computation.

types of problemR?

In a field where the final concern is with what tasks can be accomplished by com-

puter, one often hears complaints that formalism offers little or no insight. Such com-

ments may reflect a misunderstanding of the term "formal"; in particular "formalism"

and "mathematics" are commonly taken to be synonymous. But a well-designed ma-

chine or program requires the same insight, clarity of reasoning, and careful structure

as the best mathematical work. "Formal" here refers to the careful expression of ideas

in a manner suitable for succinct communication. The ideas we are most interested in

are those with the broadest implications, whether for designing programs or reasoning

about concepts.

Mathematical formalism can serve machine learning in several ways. By identi-

fying fundamental concepts common to many]earning problems, the theory reduces

the number of ideas we must retain in order to solve problems. By modeling and

simplifying problems so that we can reason formally about them and their solutions,

we increase our understanding of the relevant elements of the problem domain and

how they affect the solution. In the analysis of learning algorithms we discover their

capabilities and limitations. Occasionally a negative result will show that acceptable

solutions to the problem do not exist as specified, and thereby force us to revise our

approach to the problem.

Not all formal work, however, serves us equally well in the task of enabling machines

to learn. As new modeis proliferate, and algorithms for learning with respect to those

modeis are published, people question the relevance of the r_earch. When a theorist i_

asked, "Have you implemented any of your results?" one sometimes hears in response:

"My results have been proved formally and rigorously; therefore, programming them is

just an exercise that will not contribute any new ideas." Such comments demonstrate

a misunderstanding of the role of theory. Mathematics, especially as a model of

learning, is just a model. Models incorporate a host of assumptions and simplifications

in order allow mathematical treatment. As a consequence, the theorems are merely

suggestive of the true phenomenon being studied; only experience with implementation

can determine whether the resulting concepts are useful. When the theory arises in

response to experience - perceptron theory, for example - the mapping from theory to

practice is usually fairly close. But since much of the learning theory to date has been

concerned less with solving concrete problems than in formulating abstract models of

learning, its relevance to machine learning remains to be demonstrated. The reason

for this situation is not hard to find: under pressure to get results, theorists in all areas

occasionally pursue a mathematically fertile theory beyond the limits of its usefulness.

Both mathematical and machine studies of learning are vulnerable to the "sirens of

detail". Some theorists, for example, develop their ideas in increasingly abstract terms,

with few of their colleagues able to understand, let alone utilize, the products of their

research. Likewise there are those who derive pleasure from writing an enormously

complex machine program, perhaps to emulate certain aspects of human intelligence

or to display characteristics that even Potter Stewart would recognize as learning. In

each case these "sirens" may be luring the researcher away from the true objective

of the formal science of]earning, which is to discover its conceptual kernel and to

make these concepts part of the common knowledge of the community of computer

scientists.

For such a theory to become common knowledge in the way that the periodic table

and Newtonian mechanics are common knowledge, there must ezist simple, unified

bases for the variety of behaviors collectively called learning. No one knows whether

such a theory exists. But we hope that it does, and we continue to direct our research

efforts in its pursuit. One of the goals of this survey is to highlight the elements

common to different learning models.

General Outline. This article is in four parts. The first two sections view learning

as an inductive, rather than a deductive, inference process. The first section treats

induction in first-order logic, and the second does so in probabilistic logic. After that,

we review research that treats learning as a combinatorial search problem in which

the choice of representation is crucial to the time complexity of the problem. Finally

we examine learning in networks of simple processing units that communicate only

with other units nearby.

In each section, I describe the principal ideas, and some of the fundamental results

when these can be stated without excessive exposition. I follow with a description of

the representative literature so that the reader can begin to locate source materials in

the area. I have not compiled a complete bibliography; nor is it possible in these few

pages to do justice even to the results that are described.

The wealth of research results in learning has made the decision about what to

include extremely difficult. No reader should presume that all the interesting and

important work in formal learning theory has been listed here; equally, no researcher

should attribute my omission of his or her results as a judgment of worth. I have

included research results that, in my view, assist the reader to acquire a coherent

picture of the field, understand the motivation for current research, and appraise its

significance.

2 Induction

From the earliest days of AI, researchers have pursued two main approaches to the

automation of intelligence:

• explicit knowledge representation, coupled with general inference algorithms for

utilizing the consequences of that knowledge;

%elf-organizing systems _ composed of massive assemblies of small-scale units,

wherein knowledge is distributed throughout the system, and intelligence emerges

as a macroscopic property of the system as a whole.

Mathematical logic forms the theoreticalbasis for the firstapproach. By contrast,

no singlebranch of mathematics dominates the formal theory in the second, although

thermodynamics and statisticalmechanics have provided some of the inspiration.

In thissection and the next we consider learning within the firstparadigm, that of

inference-based systems. The term "inference" refersgenerally to effectivesymbolic

procedures for deriving new facts from kn_vn ones.. That process is called deduc-

tive if it fits the schema of a process of logical deduction (axioms, rules of inference,

etc.). Much of the philosophical research in learning has been devoted to developing

a corresponding theory of inductive inference, a calculus for inferring generalizations

from particular observations. Whereas theorems in a deductive calculus are subsumed

by the axioms, in an inductive system the "facts" or examples are subsumed by the

inferences.

Within the framework of the Church-Turing model of computation, a vigorous

study of the absolute limits of inductive inference has been conducted for the past

twenty years. The result is a rich and beautiful theory of the abstract complexity of

learning. But this line of mathematics says little about the design of learning programs

for real machines, and in accordance with the stated objectives of this survey, I shall

not describe it further. See [62] for an introduction to this research.

Inductive Synthesis of Concepts. Concept learning has been one of the core

problems of machine-learning research, for both theory and practice. 1 In its simplest

form, a concept is a subset of some universe U of objects. Associated with the concept

is a representation expressed in some chosen language £. For example, "dog" denotes

a particular subset of the set of all animals, and we can represent this subset by a

logical relation over certain features (number of legs, has a tail, sensitivity of the

olfactory sense, etc.). In a concept-learning task, the learner receives examples labeled

"dog" or Unot a dogZ by a process we call the teacher already in possession of the target

concept. Based on the examples, the learner offers a sequence of hypotheses, expressed

as sentences in £. This sequence should eventually converge to the target concept or

to a close appraximation. This informal characterization of concept learning can be

formalized in many ways, depending on how the examples are represented, how the

teacher selects the examples, what computational limitations apply to the learner, and

so on.

Assuming the representation language _ is recursively enumerable, there is a very

simple procedure (called idcntifieation by enumeration) for finding the target concept

from the examples. Let L1,L:,... be a list of the concepts. Suppose xl,x_,.., is

the list of examples presented by the teacher. After receiving the i'th example, the

inference process chooses as its next hypothesis the first concept in the list that agrees

with the i'th example. In response, the teacher chooses a counterexample (provided

one exists). It is easy to see that, under very general conditions, this simple procedure

converge8 m i.e., after some finite number of examples, the process outputs the correct

concept. Moreover it enjoys two of the characteristics of a learning algorithm as set

forth in the introduction: search and slow storage growth. The third requirement

- gradual improvement in the hypotheses - is not fulfilled in this case, and for this

reason identification by enumeration does not inspire much excitement as a learning

algorithm.

It is equally apparent that, without considerable amplification, identification by

IThroughout this survey I use the problem of supervised concept learning to i]]ustrate the main

ideas and to facilitate comp&rkon of the different approaches. Other]earning tasks are treated in the
re_eTencell.

enumeration is not a practical inference procedure. Nevertheless itforms the basis

for many learning algorithms, including the Inductive Synthesis method, to be de-

scribed below. In any real problem a correct hypothesis is liableto be a large and

complex expression; consequently any practicalalgorithm must have a technique for

inferringthe individual parts of the concept instead of searching sequentiallythrough

the entireconcept space. Many clevertechniques for accomplishing this had been de-

vised for particular languages (automata, grammars, "luringmachines, lispfunctions,

...). Then Ehud Shapiro devised an elegant way to do inductive synthesis using first-

order logicas a representation language. As a resultwe can now solve most of these

other concept-learning problems in a unifiedway by representing the hypotheses in a

first-orderlanguage.

I shallgive an overview of Shapiro's theory, based on [76].For this discussion,we

representconcepts as first-orderHorn sentences-- that is,conjunctions ofzero or more

clauses of the form (PI A... A P_) -_ Q, where P_ and Q are atoms (neither negated

nor quantified). Each clause is universally quantified over itsvariables; existential

quantificationis not used. The P_s are called the premises and Q the conclusion of

the clause. For this discussion,the term "clause" means "Horn clause". T and F

denote "true" and _false",respectively.As logicalinference rules we allow resolution

and substitution for equals.

For example, the following sentence, consistingof two clauses, definesthe concept

of plus as the set of triples(z,y,z) such that z + y = z. Zero (0) isa constant symbol

in the language, and the intended interpretationof the function symbol succ isthat

succ(x) means z + 1 (successorfunction).

T ---+ plus(Xl,O, X1).

p u,(x,,Y,,z,) plu,(x,,,u c(r,),

The first clause expresses the fact that z+O = z for all (natural integers) z; the second

says that z + (y + I) = (z + y) + I. Together these define inductively the concept plus

over all terms of the form 0, succ(6), succ(succ(O)), etc. Note that the two clauses

are hnplicitly quantified by VX,, VX2, VY2, and VZ2 and conjoLned together.

Let/: be a fLxed first-order language with equality and at least one constant symbol.

U/: denotes the Herbrand universe of variable-free terms over L. In the example above,

U/_ is the set {O, succ(O), succ(succ(6)), ...}. Let p be an ,-place predicate in _; a

model M(p) of p is a set of atoms p(t,,..., t,), where each t_ is a term in U L. Thus

the model associated with the predicate symbol p is a concept -- namely, a subset of

U/:. A model M over L is the union of models Air(p) over all predicate symbols p in
£.

The objective of the Inductive Synthesis system is to find a sentence @ in/: rep-

resenting the model M in the foll_ing way: the set of variable-freeatoms, or facts,

that are logicalconsequences of _ ispreciselythe set M.

For example, the predicate plus defined above isone representation for the model

consistingof the set of facts:

plu.(O,O,O)

plus(O,,u_Co),,uc_(O))
p_u,(,uc¢(o),o,,uc¢(o))
plus(,u¢¢(o),suc¢(o),,uc¢(,u¢¢(o)))

This same model can also be represented in many other ways.

We assume that there is a teacher who knows what __ is and who can provide

information about Air in various ways. Among these is to give a counterexample to a

hypothesis _, if _ does not exactly represent _r. For example, suppose our hypothesis

for the plus concept above is

T -* plus(X, Y, O)

(i.e., for all z and _, z + y = 0). Then a counterexample to this hypothesis would be

-plus(O,,u¢c(o),o).

The flag _-" in the example signals that this atom is not in the target model A4[(plus).

Again, in response to the hypothesis

T -* plus(X, ,ucc(r), r).

the teacher might return, as counterexamples, eitherof the following:

+plus(0,0,0)

-p_u,(o,,u_(o),o)

Note that we are expecting the teacher to have Usuperpowers_, since in general no

recursive computation existsthat can answer correctlyallsuch queries. However for

many expressive domains of practicalconcern, these are eitherdecidable questions or

approximately decidable in the sense that an algorithm can provide the answers with

high probability,or, at worst, answer, _I don't know".

The Inductive Synthesis algorithm is a variant of the idea of identificationby

enumeration, with an important change: when the hypothesis isfound to be incorrect,

the unit of modification isthe clause,not the entirehypothesis. That is,when given a

counterexample for itscurrent hypothesis, the algorithm either discovers an incorrect

clause and modifies it,or supplies an additional clause needed to account for additional

positive examples.

A simplified version of the algorithm is as follows:

Inductive Synthesis Algorithm (Outline)

1. Initialize the current hypothesis _ to the empty sentence. (The empty

sentence has no clauses and thus represents the null-set model.)

2. While _ is incorrect, repeat the following.

2.1 Obtain from the teacher a counterexample +e and store it.

2.2 Repeat the following until _ is correct for all stored facts.

2.21 If _ fails to imply some stored positive example, find a pred-

icate p E _ such that, for some fact e 6 M(p), e is not a

consequence of _. Then add to @ a clause that covers (im-

plies) the fact e.

2.22 If _ implies some stored negative example, find an incorrect

clause in _ and remove it.

3. Write down _ as the solution.

As a slightly more elaborate example, consider the target sentence consisting of the

two previous clauses defining plum, together with the following two clauses defining

timee:

T ---*ti,.e.(Xs, O,O).

timo.(X,, r,, w,) ^ plu.(X_, w4, z,) _ ti=.s(x,,.ucc(r,), z,).

We start the algorithm with the empty sentence as the current hypothesis, express-

ing the conjecture that no term isthe sum of any other terms nor the product of any

other terms. In response, assume the teacher returns the counterexample,

+plu,(,ucc(o),,u__(o),,ucc(,ucc(o))).

The algorithm, noting that thisfact isnot covered by the empty sentence, determines

that the theory of the predicate plus isincomplete and adds a clause,say

T _ plu,(X,Y,Z),

to _o. Next, the teacher tellsus thishypothesis istoo general by providing the coun-

terexample -plus(0, 0,succ (Jucc (0))).In response the algorithm removes the clause,

but is now back where itstarted since _o no longer covers the firstexample. So it

searches again, this time for a lessgeneral clause that both implies the firstexample

and failsto imply the second. For example, the clause

p_u, (x, Y,,ucc (x))

willcover these two examples.

Either thispattern of hypothesis-and-counterexample repeats forever,or the algo-

rithm converges to a sentence equivalent to the target definitionsof plusand times,

at which point the teacher cannot return any counterexample and the algorithm halts

with a correct sentence.

To complete the descriptionofthe algorithm, we also need

• a diagnosis procedure for finding an incomplete predicate or erroneous clause

causing the failure;

• a search procedure to find an appropriate clause to cover a missing fact.

These I shall describe presently. Another requirement is that the algorithm be able

to decide whether its hypothesis _o implies a given atom e. In general this problem is

partially undecidable, but as a practical matter, useful concept representations often

come with a bound on the time required to decide membership in that concept. If the

algorithm cannot prove or disprove membership of an example within the bounded

number of steps, it may conclude that the hypothesis falls on that example. 2

Diagnosis procedure. The diagnosis problem is typical of the "credit assignment"

dilemmas that often arise in search problems. Continuing the above example, suppose

the algorithm has reached the point where the hypothesis _ has the correct definition

of times, but has not yet acquired the full definition of plus. The example

+tiros (o,s.¢¢ (.ucc (0)),o)

will be a counterexample to _o if, for example, only the clause

T --, plus(X, O,X)

is missing from _o. The algorithm must somehow determine that it is the plus predi-

cate that is in error, not times.

That the diagnosis problem is solvable depends on the following two lemmas:

• If _ implies a fact not in M, then _o contains an incorrect clause -- more specif-

ically, _ contains a clause ¢ not valid in M.

• If _o fails to imply a fact in M, then _ is incomplete -- more specifically, there

exists a clause C valid in M but not implied by _.

These are fairly obvious when the target concept has only one predicate (as in the

plus example above), but with more than one, the interactions among the various

clauses make it di_cult to assign blame within _o. These simple lemmas are crucial

in telling us that the problem can be traced to at least one predicate p and its target

M(p).

To diagnose a negative counterexample, proceed as follows. We assume the teacher

can answer membership queries of the form: "Is the ground atom p(...) in M(p)?".

First, construct the resolution proof _o t- • (where e is a negative example). Let

(Px A... A P,) ---, Q be the clause in which Q unifies with e via the substitution 0. For

each of the premises P_ we ask the teacher if the fact O(P_) is in M. If the response

is yes for all i, then this clause is erroneous, since true premises are implying a false

result; diagnosis then returns this clause. Otherwise, let 0(P_) be false in M. Since

- O(P), we recursively diagnose this false example.

To diagnose a positive counterexample, proceed a_ follows. We assume the teacher

can answer ezistentiai queries:, given an atom p(tx,..., t,) in which some of the terms

t_ contain variables, enumerate the instantiatious of the variables that yield atoms in

M(p). Let e be a positive example not covered by _o. Since _ _/e, one of two situations

2This formaliaea a heurktic we use to decide whether our programs are looping endlessly or not.

must hold: (1) no clause in _ unifies with e m in which case the predicate p in the

atom e is incompletely covered by _, and the diagnosis returns p; or (2) every clause

in _ whose conclusion unifies with e has at least one premise P_ not implied by _.

For each such premise, we ask the teacher to enumerate the instances of P_ that are

true in M, and if _o fails to imply any of these, we recursively investigate these for

incompleteness.

Refinement search. The search for a new clause to cover a missing fact +e plays a

vitalrole in the correctness and efficiencyof the learning procedure. The search must

be complete, in that no possible clause may be overlooked indefinitelyas a candidate.

The search must also be systematic: once a clause has been discarded itshould never

again be tried.Shapiro accomplishes thisby defining a well-founded partial ordering

on clauses whose conclusion contains the predicate p. Well-founded means that the

ordering should be semi-infinite, with no infinite descending chains. In addition, the

relation _ is chosen so that ¢1 _ ¢: only if C1 subsumes C:. An ordering with these

properties is called a refinement relation.

We use this ordering as follows:

• Whenever a clause is removed from a hypothesis, that clause is marked.

• When searching for a clause to cover a missing fact,we selectfrom the unmarked

clauses one that isminimal with respect to the ordering -<_.

An example of a refinement on Horn clauses over the predicate plus is the following:

• The clause that is minimum with respect to _ is T -* plus(X1,Y1, Z1).

• Given the clause C = (PI ^... ^ pn) -" plus(h,t_, is),we form the set of clauses

directlybeyond C in the ordering by applying one of the following modifications

to C:

o Unify two distinct variables in ¢. For example, from the clause

we obtain

T _ p].us(X1, Y1, _1)

T --_ plus(Xi,Xl, ZI)

and

T --* plus(X1, Y1,

o Replace all occurrences of a variable X E C

its most general iustantiation. For example,

T -_ plus(X_, Y_,

we can obtain, among other clauses,

and

rl).
by a constant or a function in

from

T --* plus (XI, 0, 0)

T _ pluR(succ(X_),Y_,Y1).

o Add as a new premise to the clause C an atom in its most general instan-

tiation. For example, from

T _ plu,(succ(X,),r,,Z1)

we can obtain, among other clauses,

plus(X2, Y2,g2) A T -* plus(succ(X,), Y,, Z,)

and

tlm, s(X2, Y2, Z2) A T -_ plus(succ(X,), Y,, Z,).

With this refinement, we will eventually generate every possible clause (or an equiv-

alent to every possible clause), and are thereby assured that search for a clause to

satisfy a set of examples will terminate successfully.

Convergence properties. We have now sketched the main features of the Inductive

Synthesis algorithm: the basic algorithm itself,the requirements of the teacher, the

diagnosis algorithm, and the search-for-clausemechanism using a refinement relation.

The main theoreticalresultabout this algorithm isthat itworks: For any model ._I

over r. that can be ezpressed with a Horn sentence, the algorithm converges in a finite

number of iterations to a Horn sentence _o such that, for any fact f, to _- f iff f 6 M.

The way the algorithm obtains just the information it needs from the teacher,

locates errors within the current hypothesis, and searches systematically for the right

combination of clauses are all highly original contributions to the theory and practice

of inductive inference. Its limitations axe that it stores all examples (violating the

low-storage desideratum), relies on totally accurate information from the teacher, and

requires explicit examples of all predicates p 6 £, not just examples of the target

concept. For example, we might want the algorithm to see examples of the predicate

times and infer that some intermediate predicate (plus) is required in the definition

of times. The inference of auxiliary concepts is recognized as a difficult problem, for

which no one has yet found a satisfactory solution.

Sources. Identification in the limit was first defined and studied by Gold [33]. An

excellent survey of inductive inference theory and techniques is to be found in the

review article by Angluin and Smith [7]. The Inductive Synthesis algorithm began as

the Model Inference System of Ehud Shapiro [78, 77], and was eventually recast as a

system for synthesis of Prolog programs from examples of their input/output behavior

[76]; the latter monograph also contains a detailed implementation.

The elegance of Shapiro's algorithm has inspired other authors to explore ways of

generalizing and applying the ideas. The algebraic (as opposed to logical) basis of

the algorithm was exposed by Laird [51]. Angluin [13] compares the power and com-

plexity of several types of query capabilities in teachers, including the ones employed

by Shapiro. Whereas Shapiro's refinement search replaces a clause by one that is

more specific, others [39, 24] have employed generalization in their search, replacing a

clause by one that covers more examples. Algorithms that axe constructive (formulate

hypotheses directlyfrom the examples) rather than enumerative (likeShapiro's algo-

rithm) are potentiallymore efficient;a few such algorithms have been found, including

a subclass of logic programs [72] and linear grammars [82].

3 Bayesian Induction

As a representation language for AI, first-order logic leaves unresolved many difFicul-

ties, among them how to incorporate plausible deductions from uncertain premises

in a formally consistent way. Indeed, the entire subject of uncertainty reasoning is

an active research topic in AI. Curiously, the basis for much of the current research

on plausible reasoning was discovered more than two centuries ago: Thomas Bayes's

famous theorem on conditional probabilities has enabled scientists from Laplace and

Gibbs to Keynes and Shannon to derive statistically sound inferences from noisy data.

In this section we continue with the general problem of how to make inferences

by induction; but instead of first-order logic, we shall adopt probab{listic logic, with

emphasis on the learning aspects. The general situation is familiar: we have some

sample data, and we have a choice of hypotheses with which to explain the data. But

now, because of noise and other random factors, the data can serve only as evidence

for and against certain hypotheses, not as counterexamples to eliminate incorrect

hypotheses. How, then, do we choose a hypothesis using the evidence? And as new

data arrive, how can we revise our hypotheses so that eventually we converge? And

finally, given that we converge, do we necessarily converge to a good hypothesis?

A Calculus of Beliefs. A formal logic of plausible deduction extends Boolean logic

by capturing formally thes6r_ of deductions that humans perform every day:

• if A frequently implies B and A occurs, then]_ is more plausible;

• if A implies B and B occurs, then A is more plausible;

• if A implies B and A is known to be false, then B becomes less plausible.

An essential requirement of such a logic is that it be consisttnt: from the same evi-

dence, all paths of reasoning should produce the same conclusions. The logic should

also subsume standard Boolean logic when all probabilities are i or 0.

In place of implications, we introduce conditionals. The conditional (AIB) repre-

sents, roughly, the possibility that proposition A holds, given the certain knowledge

that proposition B holds. Similarly the conditional (A A B I C A D) represents the

possibility that both A and B hold, given the certainty of both C and D. Proba-

bilistic logic replaces the validity of propositions by a measure of belief, a function

("probability function") that assigns a value to every conditional.

The principal problem of probabilistic logic is to determine the requisite properties

of every appropriate measure of belief. Formally this is the reverse of mathematical

probability theory, where a probability measure is defined axiomatically, and theorems

are obtained relating the measures of different sets. To serve as a useful model of a

rational agent, a probability function should satisfy certain desiderata. For example,

as the probability p(A[/3) increases, then p(-_Al/3) should decrease. Again, if (A'] C)

is more probable than (A [U), then for any event]3, (A w^/3 IC) should be at least

as probable as (A A B[C). Standard probability theory (assigning real numbers to

measurable sets) satisfies these and other desiderata, and by general agreement fulfills

the requirements of a calculus of beliefs. But is it the ordy such way to compute

beliefs?

There have been many attacks on this question, starting with Keynes in 1921. Cox,

in 1946, proposed a set of desiderata for a "rational _ agent and asked whether all logics

satisfying the same desiderata are isomorphic to probability theory. In effect his answer

was ayes,: if beliefs are real numbers, and if events are formulas in propositional logic,

and we take as axioms the product rule 3

and the sum rule

p(A ^/31C) = p(A I B ^ C)p(/31C)

p(A [/3) + p(-.A [B) = 1

(where 1 - p(/3 I B)), then any consistent logic coincides with probability theory. But,

as others have observed, humans carry out plausible inference quite well without real

numbers -- e.g., with just the values of "likely _, "unlikely _, "certain _, and "impos-

sible _. Evidently the axioms proposed by Cox are too strong in their insistence that

"probabilities _ be real numbers.

Cox's work has since been generalized, most recently by Aleliunas [2]. An ex-

ample of a set of axioms weak enough to construct a consistent belief logic based

on non-numerical probabilities is shown in Figure !._ The set £ of formulas is the

collection of expressions over a finitely generated Boolean algebra, with propositions

{A, B,..., T,F), maximum (T) and operations A, V, -_. Conditionals are elements

of £ x £. Probabilities are elements of a partially ordered set (P,_<). For exam-

pie, P could be the reals under the usual total ordering, or the set (impossible,

possible,probable, certain) + with a partial ordering that extends the basic ordering

impossible <_ possible <_ probable <_ certain to this set. Probabilities are associated

with formulas by a function p : £ x £ --* P, whose properties axe governed by the

axioms.

The axioms define the necessary properties of the family P of all such belief mea-

sures. Among the properties of P is that probabilities of complementary conditionals

p(_AIB) and p(A IB) are related by a monotone non-increasing function c on P. In

the case of ordinary real probability,e(z) isthe function 1 - z. Another property is

the existence of an order-preserving dyadic function h, which in ordinary probabil-

ity ismultiplication. Many familiar properties of ordinary probability theory follow

as theorems from the axioms, including the existence and uniqueness of probabilities

1 - p(A[A) and 0 p(_A IA). But, in contrast to the Keynes/Cox formulation,

these axioms admit models that are quite differentfrom standard probability theory.

3Cox [27]argues semi-formaUy from desideratathat the product ruleisthe only axiom forcomputing

p(A A B [C) from other conditionals,consistentwith our common sense about causalityand plausible

reasoning. Similarly he argues that the sum rule is necessary, based primarily on the need to be

consistent with the product rule.

A theorem of Aleliunas based on these axioms puts the Keynes/Cox resultsinto

perspective:

Suppose P is totally ordered. For p G P and any integer n > O, let p'* denote

the value h(p,p"-l), with pX = p. Suppose also that the set P of probability values

satisfies the/ollowing property: for any probabilities p _ 1 and q _ O, there ezists a

positive integer n such that p" < q. Then the structure of (P, <_) is isomorphic to a

subalgebra of real probabilities, with h(z, y) corresponding to multiplication z × y and

c(z) to l-z.

Bayesian Learning Algorithms. Having chosen a belief function p (which, for

clarity, we now assume is standard real probability), we can then take up the learning

problem. In the Bayesian approach, the learning problem changes in three important

ways.

Whereas for Boolean logicevery hypothesis isequivalent to a characteristicfunc-

tionon the set U with value I for points that are in the concept and 0 for points

not in the concept, in the Bayesian framework a point is in the concept with

a certain probability. Thus a concept hypothesis isequivalent to a generalized

characteristic function that assigns p(z) E [0,1] to each point z in U.

Whereas inductive synthesis has at each stage of the learning procedure a hy-

pothesis that represents its current understanding of the target concept, the

Bayesian approach does not singleout any hypothesis as the current favorite.

Instead, at each stage of a Bayesian learning procedure the algorithm assigns a

probability to each hypothesis, representing itsbeliefin that hypothesis as the

target.4

Whereas the Inductive Synthesis model assumes that a teacher provides coun-

terexamples to any incorrect hypotheses, the notion of _counterexample" is

meaningless in the probabilisticsetting. Instead a teacher selectspoints from

U according to some arbitrary process (unknown to the learner), and proba-

bilisticaUyclassifiesthose examples as _in_ or "out_ according to some target

hypothesis fir..

Formally, we assume a set U of sample points and a set N = {HI, Hz,..._ of hy-

potheses. The countabilityassumption for N isa matter of convenience, not necessity;

but we do require that no two hypotheses in _ be equivalent. Each hypothesis Hi

assigns to each point z in U a probability,which we interpretas the probability that z

isa member of the concept Hi. For concept learning thisprobability depends only on

the hypothesis Hi and the point z; itisindependent of any other events,s An example

e is a point z G U together with a flag (+ or -). As usual, a "+" flag indicates that

4From a slight change of viewpoint, the ncurrent hypothesis" in the Bayesian framework can be

taken to be the function assigning a belief to each rule. However this view has not been used.

SBayesianlearningcan alsobe appliedto learningproblemsotherthan conceptlearning.In these

situationstemporaldependenciesmay become partofthehypothesesand the way thatthe sampleis

presented.

Aleliunas's axioms for a family P of belief functions over (P, __) and _:

1. Vp E P, A1,BI,A2,B2 E _: if Ax -= BI and A2 -= B2 then p(Ax IA2) =

p(BI[B=).

2. Vp_ p, A _ r.. p(A IF) = p(A IA).

3. Vp_ P,A,B _ _. p(A^BIB)=p(AIB)<_p(BIB).

4. Vp_,m_ P, A _/_- p_(AIA)=p_(AIA).

5. There exists a monotone non-increasing function c : P --, P such that

Vp G P,A,B E £: c(p(AIB)) -- p(_A [B), provided B is not logically

equivalent to F.

6. There exists a function h : P x P ---, P such that VpE P,A,B,C E £:

• h is order-preserving on e_ch of its arguments;

• p(AAB[C) = h(p(A[B A C),p(B[C));

• Let Op,c =- p('_AIA). If p(AABIC) = Op,c, then either p(AIC) = O_,c

or p(B I A ^ C) = O,.c.

7. Vp E P,A,B E T.: if p(A[B) <_ p(At_B), then p(AIB) <_ p(A[T) <_

p(AI_B).

8. Vz, y,z E P, and distinct A,B,C E £: there exist functions px,p_,ps E P

(not necessarily distinct) such that

• px(A IT) = z, px(BIA) = y, and px(CIA^ B) = z.

• _(AIB) = p2(A [-_B) = z and p2(BIA) = p_(B[-_A) = y.

• p3(A [T) = z and ps(A ^ BIT) = y whenever _ _< z.

Figure 1: Axioms of a probabilistic logic.

the point x is in the target concept, and vice versa for "-'. But in different ezamples,

the same poi_ z may be flagged with different signs by the teacher, because (recall) z

is in the concept only with some probability p and out with probability 1 - p. If the

target hypothesis assigns probab_ity p to x, then on average the teacher will flag z

"+" a fraction p, and "-" a fraction 1 - p of the times that z is presented.

The elementary propositions in £ are of two types: (1) "Hi is the target hypothe-

sis"; and (2) "the example e'. The conditional (+x]H_) is the event that the teacher

classifies the point x as "in" the concept, given that the target hypothesis is Hi. We

ordinarily assume that p(+x] Hi) can be computed from knowledge of both x and Hi.

Clearly p(-x IHi) = 1-p(+x]Hi). The conditional (Hi[e) is the event that Hi is the

target hypothesis used by the teacher, given the example e. p(Hi]e) denotes our belief

in Hi, given e. To compute this probability is the objective of the learning algorithm.

The basis of the learning algorithm is Bayes's Theorem. It may appear that we

have lost Bayes's Theorem in the formalism above, but it can be found lurking in

Axiom 6 of Figure 1:

p(A^ B IC)=h(p(AIB ^ C),pCBIC)).

Since A ^ B - B A A, we have (by the firstaxiom)

h(p(A tB ^ C),p(B tC)) = h(p(B I A A C),p(A IC)).

When h is ordinary multiplication, we immediately recognize Bayes's rule.

I shall first describe the general procedure without reference to Bayes's rule, and

then consider what it all means. The learning algorithm proceeds in "stages"

receiving an example, updating beliefs in each hypothesis, receiving another example,

and so forth. By the term "stage k" we refer to the interval after examining the k'th

example ek but before examining the k + l'st. The symbol ek indicates the sequence

axe2.., at of examples examined in the first k stages. At each stage k in the learning

process, including the initial stage (k = 0) before any data have been seen, there

is a bias function Bit: _ --_ [0,1] expressing the learner's preference for each of the

hypotheses. This bias is normalized: e

_--_igh(H_)= I. (I)

At stage k, our bias _t toward any hypothesis Hi will depend on the observations ek

as well as our initial bias _0. A larger value for _k(H) indicates a stronger belief in

the hypothesis H.

To compute the bias for any hypothesis Hi given the input sequence ek, the algo-

rithm uses the following formula:

Z (m)= o(m)p(e (2)

Here, c is a normalizing constant chosen to satisfy (1). The factor p(e_ l Hi) is called

the likelihood of the evidence et given the hypothesis Hi. Thus we can interpret (2) as

COne sometimes allows #80 to be unnormaJ_ed, a so-called improper prior.

changing the new bias for Hi in proportion to the prior bias 80(Hi) and the likelihood

that the hypothesis Hi would have produced the observations. If both factors are large,

our belief in the hypothesis is also large. But a large likelihood can be counteracted by

a small prior bias, or vice versa. For example, in most locations our prior belief that

an earthquake will occur is so small that, when the building shakes, we are much more

likely to conclude that a truck has passed nearby, despite knowing that an earthquake

would likely produce just such vibrations.

In (2) we have an algorithm for computing the bias function 8k from the example

data, but what does this quantity mean? It is natural to interpret 8k(Hi) as "the

probability that the correct hypothesis is H_ _, although this sentence makes no sense

in the context of classical probabiliW theory. By letting 8k(Hi) -- p(H_ lek) in (2),

and setting I/c = _j p(e_ [Hj)80(Hj), we again have a formal statement of Bayes's

rule for the probabiliW of (belief in) the hypothesis Hi given the evidence eL. The

initial bias 80 should reflect our prior beliefs in the hypotheses. (See the discussion of

priors, below.)

What is the result of this algorithm after processing a large sample of data? If

one of our hypotheses Hi is correct, and if the teacher selects points in a reasonable

way (e.g., selects them at random), then if the learning algorithm is sound we should

expect 8_(Hj) to converge uniformly to

1 ifi=j6ij- = 0 otherwise

in the limit as k --. oo. To prove such a proper W we would need to know more about

the domain, the choice of 80, and the process for selecting examples; but given these,

the requisite proof techniques are well known. Moreover, the convergence property

usually holds regardless of the choice of prior bias 80, provided that 80(H.) > 0 for

the target hypothesis H..

For the Bayesian learning algorithm (2) to be a practical learning algorithm, we

need to be able to compute p(e_ IHi) rather easily. In concept learning we already have

a simplifying assumption that makes this possible, namely that the teacher classifies

each example independently of the other examples. Thus

p(e, IZ) = p(x IH,).

Another useful feature of the Bayesian learning algorithm is the potential for in-

cremental revision of beliefs. As more data are obtained, it may not be necessary to

calculate the probability 8h+, (H) from scratch using all k + 1 data values. Often we

can use our previous result 8k and the new data value e_+, to obtain 8k+,, and thereby

free ourselves from having to store a complete history of the data. The idea is based

on the following simple calculation:

8_+,(H) = p(H e.+x)

= p(H ek+x,ek)

= cpCek+,lek, It)P(Hlek)

= H)8 CH)
=

The last equality is a consequence of the independent-classification assumption. Again,

c is some normalizing constant. Thus _k+z (H) can be computed knowing only _ and

the last example e_+l. The independence assumption is critical to this argument and

should therefore be examined carefully before adopting it in practice.

Bayesian Inferences Now let us suppose that we employ a Bayesian learning algo-

rithm in some domain, and that we axe confident the algorithm converges in the limit

to the correct hypothesis. At stage k what have we learned by computing _k? Conver-

gence in the limit is not particularly interesting unless we can draw useful inferences

and make good decisions based on those inferences at finite times as well.

Following is an algorithm for inferring what we expect to observe at time k-t- 1 in the

way of concept membership. Let z be any point in U; write p(÷z_+l) to indicate the

probability that z will be classified as _q-_ if selected by the teacher for presentation

at stage k -I- 1. The probability of the example -kz_+l given our current bias _ is

calculated from the formula:

= I C3)

Computing p(+z_+x) for one point z_+x entails computing an average (over all hypothe-

ses) of the likelihoods weighted by the biases. When g consists of a large number of

hypotheses, this may not be a practical calculation to do exactly, but at least in the-

ory we have the basis for making principled decisions from our predictions (by using a

minimax strategy, for instance). Note that instead of choosing one of the hypotheses

as our current favorite and making guesses based on that, we are basing predictions

on all hypotheses, weighted by our beliefs in them. Thus the predictions may not

coincide with those of any individual hypothesis in X.

This is one algorithm for predicting concept membership, but is it a correct algo-

rithm? After all, many algorithms are possible for choosing hypotheses and making

inferences. If someone presented one of these other learning/inference algorithms, how

might we argue that the Bayesian algorithm is as good or better?

Mathematically, of course, this question is nonsensical. We can point to our prob-

ability model and assert that our inference method is consistent with a rational agent

based on certain axioms, and that thee axioms satisfy certain desiderata specifying

how a rational agent should act. But lacking formal criteria for the quality of an

algorithm, we cannot prove one to be better than another.

For certain problems, however, useful criteria are available and formal results have

been obtained. In many pattern recognition problems, examples are selected randomly

by the teacher, and the stated objective is to minimize the mean squared difference

between the true probabilities and those predicted by the target model H.. Using

this criterion, we can characterize an optimal algorithm as follows. For the point

z E U let F(+z) be the actual probability that z is classified as belonging to the

concept. (F might not correspond to any hypothesis in _/.) Let p(+zlek) be the

probability predicted by an algorithm A based upon the data ek. (When A happens

to be the Bayesian algorithm, this is given by (3) above.) Then the mean squared

error, Err(A I F, et), of the algorithm A ba_ed on et is given by

Err(A IF, ek) = ')"_[p(+z I e,.)- FC+z)] z,
gEU

and the net mean squared error Err(AIF) is the expectation [t of Err over all se-

quences et of k examples:

ErrCAtF) - let) -
cEgJ

To quantify the overallerror of A, we have to specifythe distributionof the problems

m i.e.,the distributionId(F) of allpossible F's. Then the error of the algorithm is:

SrrCA)= Ep'(F)Srr(A IF).
F

(4)

We define an algorithm to be optimal for the distributionIY(F) ifitminimizes Err(A). 7

For some classesof pattern recognition problems, the following has been proved:

Suppose a teacher selects a concept from the set _, choosing H, with probability It(H,)

(1< i < I l). ThentheBayesianalgorithmb ed on (S), with prior Do(H,) - f(H,),

is an optimal algorithm for the distribution tt of problems. Moreover, this fact is

independent of the number k of examples provided to the algorithm. See [88] for more

on this kind of analysis.

Priors. A significant point about the preceding theorem is that, to be optimal, the

Bayesian algorithm needs to choose the prior _0 to match the actual distribution

of problem instances. But suppose there is ordy one problem instance? What, for

example, is the probability of the destruction of the universe in the next century?

The Bayesian learning algorithm requires the learner, before seeing any data, to

declare his bias for each of the hypotheses in the form of the function /_0. Besides

making all such preferences explicit, this may help the learner to incorporate previous

learning experiences and to express requirements external to the learning problem,

such as a preference for simpler hypotheses over more complex ones. But this is

also a source of controversy, for one must decide how to encode all prior information

and preferences in the form of a real-valued function. And to be mathematically

convincing, we must do so in a principled way.

Since Laplace, scholars have argued about the nature of priors (the function _0), to

the extent that for much of this century the field of statistical inference has been split

into two camps: Bayesians, and those who reject Bayesian inference entirely because

of the inherent subjectivity of choosing priors. To illustrate the problem, suppose

we are trying to estimate the distance of s particular galaxy from Earth. We have,

as data, the results of a small number k of independent astronomical experiments

ek = {el,..., ek), each of which produces a (noisy) estimate for the distance d. Being

practiced Bayesians, we calculate for each experiment _ the distribution p(e,]d) of

7Note that the number k of example points given as input to the algorithm is fixed. In effect we are

comparing how well different algorithnm do when given the eame data.

observations given the distance d, and combine these into a distribution p(d[et) of

distances using Bayes's rule:

p(d Iek) = e_0(d) p(ek Id).

But what do we choose for _0(d), the prior distribution for d? If we assume total

ignorance, we might choose a uniform "distribution" /_0(d) -- 1 for d _> 0. s But

our ignorance is not total: we know that d <_ oo; with even minimal knowledge of

astronomy we can easily write down an upper bound d_ on this distance. Even if

we could agree on a fixed value for dmx, and choose/_0(d) to be uniform over [0, dm..x],

we would have to admit that, if we are ignorant of d, we are equally ignorant of

any function y(d), so why shouldn't we choose f(d) to be uniform over the interval

[0,/(dm_x)]? The problem here is one of quantifying ignorance in a consistent way: in

different inference problems, each with the same prior information, we should choose

the same prior _0, even if we are inferring probabilities for different quantities.

No single satisfactory solution to this problem has been proposed, but a number

of good ones have been suggested and applied successfully, particularly in domains of

scientific inference. One is to select the prior distribution/_0 with maximum entropy

S(/30) = - _,/_0(H_) log/_0(H_) satisfying all "testable" prior information. (A testable

property of a distribution is one for which an effective decision procedure exists)

Another is to construct priors so that the information is invariant under changes in

scale (units of measurement) and translation of the coordinate system.

But just as evaluating an inference procedure depends on the definition of an opti-

mal algorithm, any technique for choosing priors can be judged only by how success-

fully we derive inferences from them, and on no other basis. In all learning problems,

we attack the problem by making prior assumptions about the nature of what we

are learning; as a minimum this takes the form of choosing a representation for our

hypotheses. The success of the learning algorithm depends strongly on the validity

of these assumptions; and poor choices show up in the form of answers that predict

and explain poorly. Bayesian priors are just another of these initial assumptions. A

poor choice of priors is usually less critical than a poor choice of hypotheses, since the

inferences become less dependent upon the priors as more data are obtained.

Sources. The probabilistic logic shown in Figure 1 and discussed in the surrounding

text is due to Aleliunas [2, 3]; actually his axioms are slightly more general than the

ones we have listed. Keynes [48], Cox [27], Acz_l [1], and Tribus [83] contributed

results leading up to this work. A different type of probabilistic logic, in which beliefs

are probability ranges rather than point values, was explored by de Finetti [28] and

independently by Nilsson [61]. Many techniques for drawing inferences from uncertain

information have been devised, for which the book by Pearl [63] is an excellent, recent

source.

Bayesian inference is a rich topic with many textbooks and references for both

theory and application. As good examples we may cite the statistical texts by Berger

[16] and Box and Tiao [22], and the pattern recognition texts by Duda and Hart [30]

SAn improper prior; see footnote 6 above.

s

and Young and Calvert [91]. That Bayesian inference is no less than a general learning

procedure has been noted [26] but not well documented, particularly in the theoretical

literature. The book by Pearl [63] is perhaps the most complete central source to date

for Bayesian inference techniques in AI. Applications of Bayesian inference abound; a

good source for much of this work is the series of annual proceedings of the Maximum

Entropy and Bayesian Inference Conference.

Polemics about the comparative merits of Bayesian learning ms _ m'8 other methods

are a constant source of entertainment, and no one entertains with more insight than

Jaynes [40]. Closely related to Bayesian inference are the maximum-entropy method

(due to Jaynes) and minimum-cross-entropy method (due to I. J. Good). This rela-

tionship is treated formally in [79]. Vapnik [88] discusses Bayesian and other methods

for pattern recognition and proves the optimality result cited above.

[41] and [42] were breakthrough paper, in the theory of choosing priors. Berger and

Berry [17] argue cogently that classical statistical inference (of the Fisher-Neyman-

Pearson school) is no less subjective than Bayesian statistics; they suggest that the

Bayesian approach of including all subjective information explicitly in the form of

priors is preferable to embedding it in the experimental procedure, where it is harder

to identify.

4 Learnability

Although Bayesian learning is a powerful method for making inferences from sample

data, little is known about how computationally difficult such an inference can be. In

the past few years a series of formal learning models, often called learnability theory,

has been used to study questions such as these:

• How complex isthe learning problem in a particulardomain? Particularly,what

can be learned in (say) polynomial time or logarithmic space?

• Ifwe change to a differentrepresentation, does the learning problem become

quantifiablyeasier?

• How can a learning algorithm be designed with provable performance guaran-

tees?

PAC-LearnabUity. The PAC-learnin_ model differs from those we have considered

until now by explicitly quantifying the running time of the learning algorithm and the

accuracy of its result. We continue within the framework of concept learning, although

the theory can be applied to other types of learning problems as well. The teacher in

the PAC-learnability model selects points from the universe U independently and at

random, with probabilities determined by some fixed probability distribution P; the

teacher then labels each one positive (if in the target concept) or negative (if not). The

learner does not know what P is, and can make no assumptions about the distribution

of the training data; hence the results are distribution independent.

° PA C is mnemonic for probably approzimately correct.

Let _ = {HI, H2...) be a family of concepts over U. The teacher selects a concept

H. from X and an arbitrary probability distribution P over the set U. The learner

asks the teacher for some number m of examples. In response the teacher chooses

m points from U, independently and randomly according to the distribution P. The

teacher then indicates for each point z whether z belongs to H, and presents the set

of labeled points to the learner.

The learner's task is to approzimate the target concept H. in finite time, to a

specified accuracy. For any concept Hi E _, let HiAH. be the set (Hi-H.)u(H,-Hi),

the symmetric difference of the two concepts Hi and H.. The concept Hi is said to

be an e-approzimation of H. if the probability P(Hi/_ H.) is at most c. Such will be

the case if the likelihood is small (_< e) that another example from the teacher will be

a counterexample to Hi. The learner may request any number rn of examples, but he

must output a hypothesis in)/that e-approximates H..

Note that the learner's success in approximating H. is being measured by the same

probability distribution used by the teacher to select examples. He is not penalized

if his result incorrectly classifies points that occur only rarely. Thus PAC-learning

mirrors the situation where we all have somewhat different versions of a concept (e.g.,

a "cup"), but agree on everyday instances of the concept (e.g., a coffeemug is a cup,

but a tablespoon is not).

There is, in general, no way to guarantee that the learner will a_ways produce an

e-approximation to the target concept as long as there is any possibility of drawing

a wildly unrepresentative sample. The best we can require is that the]earner do

so on any run of the algorithm with high probability:, if the algorithm is executed a

large number of times, only a small fraction b of them on average fail to output an

e-approximation.

Summarizing:

A PAC-learning problem consists of four things: a concept family _ over U, two

parameters e and 5, each in the range (0,1), and a teacher. The parameter e is

the required accuracy of, and 5 the confidence in, the learner's output.

• The teacher selects a target concept H. E)_ and a probability distribution P.

Both of these are hidden from the learner.

For every problem instance (e,5,H., P), an algorithm for the PA C-learning prob-

lem requests a number of classifiedexamples from the teacher, chooses a hypoth-

esisHi E _, and halts.Thenumber of examples iscalled the sample size.

• The algorithm solves the problem if

Prob[(H_/_ H.) > el< 5.

We say that the family _ of concept representations is (PAC-)learnable 1° if there

exists an algorithm to solve the PAC-learning problem.

X°The appropriateness of the term learnable has been critici_ed, with justification. Along with other
technical terms like in/ormation, it should be treated only as formal terminology.

Consider a simple example. SupposeU is the se_ {0, I} n of all Boolean n-tuples,

and that we choose to represent concepts as Boolean formulas consisting of a single

monomiaL For example, the monomial z:(-_zs), which we shall write z2_, represents

the set of all n-tuples (bl,... ,bn) with _ = 1 and bs = 0. Boolean variables z_

are commonly used to encode attributes of the target concept (e.g., "flies", _eats

fish"). Suppose that the teacher selects the concept represented by the monomial

Ho -- z2z_ as the target, and chooses some probability distribution P over the n-

tuples. Suppose also that the learning algorithm concludes by choosing H - zlz2 for

its hypothesis. This hypothesis agrees with the target on all points except those of

the form (I, I, I, ,,..., ,) or (0, I, 0, ,,..., ,); (where • indicates either O or i). This

set of points is HAH°. If we sum the probabilities of each of these points and the

result P(HAHo) is at most e, then the learner's answer is an e-approximation to the

target. Suppose the algorithm requests lots of examples of the target concept, but by

a quirk of probabilistic fate receives many copies of the same example -(1, 1, 1,..., 1).

Even though the probability of this happening may be extremely small, unless the

probability of the point (1, 1,1,..., 1) is zero, it is still a possible sampling event. On

the basis of this unrepresentative (and uninformative) sample, the learner may output

a hypothesis that is not an e-approximation to z2_s. But this is tolerable, provided

this sample and others for which the algorithm does not produce an e-approximation

occur on any individual run of the algorithm with probability less than 6.

Polynomial-time PAC-learning. We have defined what it means for a domain to

be learnable in the PA C framework, but we may also ask what domains are learnable

using only "feasible" computational resources, especially time. According to current

jargon, "feasible" means "bounded in running time by a polynomial in the parameters

of the problem". Parameters here include the accuracy E, the confidence 5, and some

measure n of the problem size (such as the number of Boolean variables in the pre-

ceding problem). A family _ of concept representations is pol_lnomial-time learnable.

if it is learnable by an algorithm whose sample size is bounded by a polynomial in n,

l/e, and 1/5, and whose running time is bounded by a polynomial in the size of the

sample. 11

To explore these ideas, consider a concept class _/ of cardinality N. (N and n

are usually different.) The following simple procedure, which we call the "filtering

algorithm", is the basis for many PAC-learning algorithms. Request m examples

from the teacher (where the value of m is still to be determined), and Output any

concept in _/ that is consistent with all m examples. The sample size m depends on

c, 6, and N. To compute a value for m, we reason as follows. If a hypothesis H is

not an e-approximation of the target, then the probability that a randomly chosen

example will be consistent with H is no more than 1 - e, and the probability that all

m examples are consistent with H is at most (1 - e) '_. When m = e -1 ln(N/6), we

have:

(1-c) w' _ e-"'

ZZWe also assume that the learning algorithms arc uniform for n, even though for some of the results

cited this assumption is not necessary.

And since there are at most N-1 concepts that are not e-approximations, the probabil-

ity is less than 6 that any unacceptable hypothesis will survive the test of consistency

with all m examples. Thus

m(N,c, 6) = 1INN (5)
examples sufficeto achieve PAC-learnability. The filteringalgorithm isa poly-time

PAC-learning procedure, provided that the teacher returns examples of polynomial

length (in bits)and that the task of findinga consistent hypothesis in _ can be solved

in time polynomial in m. Whether or not these hold depends on the particulardomain.

For the family of Boolean monomials used in the previous example, they do. With

n attributes,there are 3n monomial hypotheses, so it is infeasibleto write them all

down and scratch out the ones that disagree with some example. However, we can

accomplish much the same thing by tracking each individual attribute. Initiallywe

' the null concept. In response to a positivehypothesize the monomial z1_.., znz_,

example +(bx,... ,bn), for each i, if b_ = i then remove the variable _ from the

hypothesis (ifithas not already been removed); otlierwise,ifbi = 0 then remove z_.

Negative examples willalways be consistentwith the current hypothesis, and may thus

be ignored. After rn = O[(n/c)In(1/6)) examples the resultingmonomial satisfiesthe

PA C-criteria.

But what about more complex domains where these do not hold? Note that the

formula (5) is polynomial in logN; thus as long as N, the number of hypotheses in

)/, is O(2P°IY(_)),the sample size will be feasible. On the other hand, since there

are 22_ Boolean concepts over {0,1}n, this algorithm cannot be used to learn the

family of arbitrary Boolean concepts. One istempted to conclude that when logN is

superpolynomial in n, the family _/is not polynomial time learnable. But thisis not

so, since only a subset of _ may be sufBcient to provide an E-approximation to any

concept in X.

Suppose the problem of finding a consistent formula is not feasible. We cannot

conclude that the PAC-learning problem on _ isinfeasible,because there may be some

other algorithm besides the filteringalgorithm that solves the problem in polynomial

time.

Ifneither the cardinalityof N nor the di_culty of finding a consistent hypothesis

determines whether a domain ispolynomially PAC-learnable, we may ask what does.

In [20],Blumer, Ehrenfeucht, Haussler, and Warmuth show that it is not the car-

dinalityN, but the combinatorial property known as the Vapnik-Chervonenkis (VC)

dimension of the family _/that determines whether a polynomial sizesample islikelyto

filterout allunacceptable hypotheses. Unfortunately space does not permit adequate

definitionor discussion ofthisquantity,other than to remark that the VC dimension is

at most log2N, but can be much smaller32 In the same paper, the authors also show

12For the important, but special,case ofBoolean concepts familiesover n binary attributes,the same

authors note that logN isbounded above by a polynomial inn iffthe VC dimension isbounded above

by a polynomial in n. This resultalsooccursin [57].

that something very close to the consistency problem/8 the problem that, along with

the VC dimension, determines whether the domain is polynomially PAt-learnable.

Polynomial learnability of _/is equivalent to the requirement that the VC dimension

of _ be bounded by a polynomial in n and that there exist a randomized poly-time

algol;ithm taking a set of examples as input and producing, with probability at least

1/2, a hypothesis in _ consistent with the examples.

Change of representation. The learnability formalism also helps to quantify the

impact of choos_g a particular representation for concepts. A concept class is simply

a family of subsets of U, but often there are many languages that can be used to

represent the same family. For example, Boolean concepts -- subsets of (0,1) "m

can be represented by arbitrary propositional formulas over n Boolean variables, or

by disjunctive-normal-form formulas (DNF), or by conjunctive-normal-form formulas

(CNF), etc. Similarly, concepts over binary strings can be represented by formal

grammars, automata, and algebraic expressions.

Practitioners have long known that a mere change of representation can turn a

difficult learning problem into an easy one and vice versa. The subset of the natu-

ral numbers, (1,11,1001,110011,1010001,...) in binary, is much easier to define in

ternary: (1,10,100,1000,10000,...). Consider also the concept class)_ of concepts

that can be represented by disjunctive normal form formulas with at most k terms.

For example, zl_z4 v z_z4z8 is a 2-term DNF formula but not a 1-term DNF. With

growth measured by the number n of variables, this family is not .PAC-learnable for

any fixed k > 1 unless -- contrary to conjecture -- complexity classes NP and R are

identical [64]. But by changing the problem to allow the learner to represent the same

family of concepts in a different (and more expressive)language, called k-CNF (CNF

formulas with at most k literals per conjunct), the class _(becomes PAC-learnable.

The reason for this turnabout is as follows. Concepts expressed in k-term DNF are

hard to learn because the consistency problem is NP-hard, even though the requisite

sample size is feasibly small. By contrast, the consistency problem for k-CNF requires

only polynomial time [87]; moreover, every k-term DNF formula has an equivalent k-

CNF formula of about the same size. Thus without any large increase in sample size

over that needed for k-term DNF, we can quickly find a consistent k-CNF formula

H' that c-approximates the target concept. Of course since the k-term DNF fam-

ily is properly contained in k-CNF, the algorithm may produce a k-CNF hypothesis

that does not cdrrespond to any k-term DNF concept, Neverthess, by this change Of

representation we satisfy the requirements of the PAC-learning problem: to find an

_-approximation of the target concept in polynomial time.

To summarize: For a given family C of possible target concepts (subsets of U), there

are often many different languages (classes of formula_) for representing the concepts

in C. The minimum requirement for such a language X is that every concept in C be

represented by some formula in _. It is possible that, for a class _, the consistency

problem is not tractable. In such cases it may help to change to a representation

_ whose consistency problem is easier to solve. Let N and N' be representation

languages for a family of concepts over the same set U, We say that X is PAC-

learnable by _' if there is an algorithm that solves the PAC-learning problem over

_' by choosing hypotheses from X'. For every problem instance (E, 6, H. E _', P), the

algorithm must halt after obtaining some classified examples from the teacher and

choosing a hypothesis H i E _('; and with probability at least 1 - 5, P(H_ A H.) _ e.

When _ is PAC-learnable by _, then _(is PAC-learnable in accordance with our

previous definition. One can easily show that if _(C_ _(' and _(i is polynomial-time

PAC-learnable, then _(is polynomial-time PAC-learnable by _'.

LearnabUity of large concept classes. Learning _(by a more expressive repre-

sentation _(e may not help if _(_ is too ezpressive. Consider concept classes that are

regular sets of binary strings (0,1)*. For any set of m examples, we can easily find

a consistent hypothesis in the class of all deterministic finite automata (DFAs) by

choosing an automaton that accepts precisely those strings occurring as positive ex-

amples. Yet rarely does a simple list of the positive examples qualify as learning, and

the likelihood that this list c-approximates the target DFA is probably rather small. In

AI, this observation goes by the name of the disjunction problem [14]: representations

that are expressive enough to include disjunctions (unions) of singleton concepts are

too expressive because their consistency problem has a trivial solution.

In the terminology of learnability theory, domains with a disjunction problem

(including DNF formulas and finite automata), are not PAC-learnable because the

VC dimension increases too rapidly with the size parameter n. But here we encounter

a serious weakness in our definition of PAC-learning: some domains that are not

PAC'-Iearnable according to the definitions and results cited above are, in actuality,

quite learnable!

For example, consider again the class of DFAs accepting a subset of the binary

strings (0, 1)'. The teacher picks a DFA of any size and a distribution over {0,1) °,

and presents a continual stream of classified examples. Can an algorithm PA C-learn

this DFA? The VC dimension of the family of DFAs is infinite, so according to the

main theorem of [20] it is not learnable from any finite sample size. But consider this

algorithm:

1. Let Hi,//2, ... be any enumeration of the DFAs. Set i :- 1.

2. Obtain rn = e-i 1n(2/5) examples, and test Hi for consistency with this sample.

3. If Hi disagrees with any example, increase i by 1, replace 5 by 6/2, and go to

step 2.

4. Else write down the DFA Hi and halt.

It is not hard to show that this algorithm produces a PAC-approximation to the

target. Thus DFAs are learnable. What is more, we have used no special properties of

DFAs other than their enumerability and the ability to decide whether a DFA accepts

an example string. Hence this argument applies equally to any recursively enumerable

class with a decidable membership property, regardless of the VC dimension.

Sowhere have we gone wrong7 The problem is that our model of PAC-learning re.

quires the learner to decide how many examples to obtain be[ore testing any hypotheses. 13

This a priori sample size is the quantity that is determined by the VC dimension.

Without that artificial requirement, some "unlearnable" classes become learnable and

even polynomially learnable [53].

To correct this deficiency in our definitions we revise the learnability model as

follows. Let C be a family of concepts m subsets of the (countable) set U. Let _ be a

family of representations for concepts in C such that every concept in C is represented

by at least one hypothesis in _. To each H E _ we assign an integer-valued measure

8(H) of simplicity, which we call 6iz¢. We assume that 8(H) > 1 and that 8(H)

is easy to compute for all H. Let X0 be the subset of _ consisting of all concept

representations of size s; thus X = U°>0 X,. A concept C E ¢ belongs to _i, if 8 is the

minimum size of any of its representations in _; in this case we write 8(C) - 8. An

instance of a PAC,-learning problem is a concept C. E C, parameters e and 5, and a

teacher.

The teacher chooses an arbitrary probability distribution P over U, and upon

request, obtains a sample point z according to P, classifies it as positive or

negative according to C., and presents it to the learner.

A learner takes the two parameters e and 5, and outputs a hypothesis H E _/,

after obtaining a number of examples from the teacher. This number may depend

on e, 6, and the target C..

We say that C i6 PAC,-learnable by Y if there exists a function f(8, l/e, 1/5)

and a learner such that, for any problem instance, with probability at least

1 -5, the learner requests at most f(8(C.), l/e, 1/5) examples and writes down

a hypothesis H E _ that e-apprc0dmates C..

We say that C is polynomiallv PAC,-learnable by g if it is PACo-learnable by an

algorithm for which the sample.size function f(8, l/e, 1/5) is polynomial in all

three arguments, and which runs in time bounded by a polynomial in the size

of the sample.

Note that the running time of the learner may increase with the size of the target

concept. But since the learner does not know the size 8(C.) in advance, he may need

to keep increasing the sample size %n the fly" as he tests larger hypotheses.

Instead of the filtering algorithm, our prototype for designing efficient learning

algorithm is as follows. Let m(8) be a monotone increasing function with the property

that m(8) is an upper bound on the sample size needed to choose an e-approximation

to any concept of size at most 8, with confidence 1 - 5/2 °. (m(8) depends on the VC

dimension of the domain.) Then

1. Initialize 8 = 1.

tSThia auumption in the definition of PAC.learnabifity and its implications went unnoticed by re-

searchers for nearly two years.

2. Obtain enough additional examples 'so that a total of m(8) examples are avail-

able.

3. If there exists a consistent hypothesis of size <_ s, write it down and halt.

4. Otherwise increase s by one and return to step 2.

Note the modified consistency problem in step 3. We can solve this problem if there

is a polynomial-time algorithm to choose a hypoth_is of minimum size consistent

with the sample. And for many domains, the minimum-size consistency problem

is polynomially related to the decision problem in step 3. Alas, for a number of

interesting domains m including DNF and DFA -- this problem is NP-hard. It may

suffice, however, to find a consistent hypothesis polvnomially larger than minimum,

and this easier problem can sometimes be solved in polynomial time even when the

minimum-size Consistency problem cannot.

For example, an Occam algorithm is a procedure that finds a consistent hypothesis

of size at most sCrn a for some constant c _ 1 and a < 1, where s is the size of the

minimum consistent hypothesis. Note the factor ma: since a < 1 the size of the

resulting hypothesis is strictly smaller than the size of the sample (for all sufficiently

large target concepts), so that the disjunction problem is eliminated. Upper bounds

on the sample size re(s) for Occ_ algorithms have been calculated as a function of

the VC dimension [20].

Even with PACR-learnability some concept classes of particular interest remain

hard to learn. For example, consider the class of Boolean concepts over {0, 1) n rep-

resented in DNF. A convenient measure for the size s of a formula is the number of

symbols. Boolean concepts are clearly PACo-learnable by DNF with an exponential

sample size, but what about polynomial PAC,-learnability? For any Boolean concept,

there is a minimum-size DNF formula to represent it. Finding a minimum-size DNF

formula consistent with a set of examples is NP-complete, so a minimum-size filtering

algorithm is unlikely to lead to a poly-time algorithm. There may be an Occam or

some other learning algorithm that requires polynomial time and a polynomial size

sample, but none is known, and many researchers suspect that DNF is not polynomial

PA C _-learnable.

Arbitrary Boolean formulas (not just DNF) are a more compact representation

than DNF. Hence the learning problem is more difficult, since the minimum-size for-

mula is smaller and the allowable running time correspondingly shorter. Recently

Kearns and Valiant [47] showed that learning Boolean formulas is as hard as solving

some number-theoretic problems (factoring Blum integers, deciding quadratic residu-

osity, etc.), all of them problems conjectured to be computationally infeasible.

The class of _regular" concepts (sets of binary strings accepted by DFAs) is of

great practical significance. If we measure the size of a DFA by counting states, then

each regular concept has a unique smallest representation as a DFA. We have seen

that regular concepts are PAC,-learnable by DFAs, but how complex is the learning

problem? Finding the smallest DFA consistent with a set of examples is known to be

NP-complete. Moreover, Pitt and Warmuth [66] have shown that learning regular

concepts -- whether by DFAs, NFAs,regular expressions, or regular grammars -- is

as hard as learning Boolean formulas, and recently they extended this to show that

even finding a consistent DFA polynomially larger than the minimum is hard. An

Occam algorithm is, therefore, unlikely to be found. Moreover, the results of [47]

imply that the problems of learning acyclic DFAs and of learning a polynomial-size e-

approximation to a DFA are both as hard as the number-theoretic problems mentioned

above. In short, the evidence is compelling that arbitrary Boolean formulas and finite

automata are too general to be PAC,-learnable.

Sources. The spark for the current interest in learnability theory was the pair of pa-

pers by Valiant [87, 86]. Statisticians have studied related models [29, 89]; recognition

of the relevance of this work and applying it to concept learning was one contribution

of the important paper by Blumer et ai. [19]; the same paper also contains a proof that

classes with infinite VC dimensions are not PAC-learnable. Others pointed out that

this non-learnability property depends on the assumption that the sample size is inde-

pendent of the target [53]. They showed that without this assumption any recursively

enumerable hypothesis class with a decidable membership property is learnable.

To date the theory has accumulated more negative (non-learnability) results than

positive. Hardness results for the consistency and other problems are given in [11,

12, 64, 46, 66, 65, 47]. Positive (learnability) results are available for k-CNF [87],

k-decision lists [67], conjunctive and internal-disjunctive formulas [34], functions [58,

57], and others. Occam algorithms are introduced in [21]. When the learner can query

actively, learning possibilities change substantially [13]. Even considering the known

results for finite automata [5, 12, 69, 68], context-free grammars [73, 10], propositional

Horn sentences [11], and problem-space operator heuristics [59], we have only begun

to explore this learning problem. The recent volume [35] is a good source for recent

research in learnability and other theoretical topics in learning.

An interesting model needs to be robust in the sense that minor variations in its

definitions should leave the principal results intact. The PA C-model has many minor

variations and several major ones; these are compared (and shown to be substantially

equivalent) in [36]; see also [4]. An important variation, treated there and in [37], is

the pr_iction model. The learner must predict membership of the randomly chosen

point in the concept before the teacher informs him of the correct answer. Error is

measured by the probability of making an incorrect prediction, as a function of the

number of examples. Intuitively, a predictor that improves its prediction accuracy

after polynomially many examples must be learning some way to approximate the

target. Bounds on how well a predictor can do are closely related to bounds on how

well a concept learner can do, independent of the choice of representation. This is

especially useful in proving lower bounds for hard-to-learn concept classes.

In another important variation, the impact of errors in the teacher's training data

has been examined. Errors can be deliberate (malicious errors) or random (noise), or

in between. Errors can affect the choice of a point z E U or how the teacher classifies

it (+ or -). Good bounds on several kinds of errors are known [45, 6, 75, 80, 52].

Closely related is the case where the target concept cannot be represented exactly

by any hypothesis in the hypothesis class. Then the closest approzimating concept

becomes the objective of the learning process. Results on this problem are given in

[89], [53], and [4].

Most of the learnability research has been applied to concept learning, but some

PAC-learning results are starting to appear in other areas too. Rivest and Schapire

[69, 74] study the ability of a robot to model its environment using finite automata.

Convergence of stochastic models is discussed in [9, 49, 50]. Sutton analyzes a class of

incremental prediction models in [81]. Angluin [13] relates the PAC-learning model to

that used by Shapiro and others, in which the learner must identify the target exactly

while receiving from the teacher counterexamples to his hypotheses. Recently she has

shown that DFA's and DNF formulas are not learnable in this model either [12, 8].

5 Network Models

Recall that AI has long had two competing representational paradigms:

• Explicit symbolic encoding of knowledge structures, coupled to inference algo-

rithms for using that information; and

• A distributed network of rather simple processor nodes, wherein knowledge is

an emergent property of the whole network and not necessarily apparent from

its microstructure.

In the fifties, and again in the sixties, the latter, conneetioniat view, was aggressively

explored, but the symbolic approach eventually assumed the more prominent part in

research. The mid-eighties saw renewed interest in connectionist applications, fueled

mainly by the (re-)discovery 14 of a learning algorithm known as error back-propagation

and its application in several impressive experiments.

Actually this was not the first time that connectionist AI had been reinvigorated

by the discovery of a learning algorithm: Rosenblatt's perceptron learning algorithm

and the Adaline adaptation algorithm of Widrow and Hoff inspired a burst of research

in the early sixties. Learning algorithms are critical to the vision of huge intelligent

networks constructed of "dumb" elements, since explicitly programming a massive

network of heterogeneous processors is clearly impractical.

A "neural" network is usually represented by a directed graph in which the nodes

are associated with simple computational units (threshold logic units, finite-state au-

tomata, or the like) and the edges carry numerical messages between nodes, modified

by fixed weights assigned to each edge. How can we explain the recurring interest in

this model?

• The model is potentially massively parallel. In contrast, symbolic algorithms

are often hard to adapt to parallel machines because they are conceived as serial

procedures.

14The error back-propagation technique has apparently been found independently by several re-

searchers, including P. Werbos (1974), D. Parker (1982), Y. LeCun (1985), and D. Rumelhart, G.

Hinton, and R. Williams (1986).

• The model is distributed. Knowledge is a global property of t1_e network, not

concentrated in the high-information content of a few symbols. Consequently

network performance may be less sensitive to local hardware failures and more

tolerant of noise in the input.

• In some models the processor elements operate asynchrononsly and use continu-

ous signals. With real-valued outputs and weights, it is possible to describe the

network behavior using differential equations rather than combinatorial mathe-

matics (something particularly appealing to scientists with a background in the

physical sciences).

• In some models the network k sparsely connected: individual units communicate

with only a relatively small subset of the nodes in the network. This suggests that

large networks might be configured automatically by a simple learning algorithm

that feeds error information back through the net, inducing local changes in

connections or weights.

• The model is related to the Hebbian model of the brain. For some people this

compatibility with neural models raises the hope that a simple theory might

account for experimental observations about perception and cognition.

In both symbolic and connectionist AI research, the excitement over the potential

of the ideas, fueled by festive funding levels, has led to a large body of desultory

experimentation. At the same time, the progress of rigorous fundamental reseach

based on formal foundations has been modest. As with learnability theory, many (but

not all) of the mathematical results are negative ones. These negative results are

valuable for guiding research away from less promising directions; unfortunately they

are occasionally misinterpreted as discrediting the entire paradigm.

Perceptrons. Perceptrons are a class of linear threshold devices. The name derives

from their original use in studying the pattern-recognition problems associated with

visual perception. Threshold logic is so closely related to Boolean logic that it would be

surprising if many of the learnability results didn't have counterparts in threshold logic.

Nevertheless the flavor of perceptron results is different from those of the previous

sections. One reason is that the predicates of interest tend to be ones with topological

characteristics (convexity, connectivity), and those that remain invariant under certain

transformation groups. For example, the predicate A(zl,.. •, zn) might be true on any

input pattern containing the letter "A z, no matter where it occurs within the input

field x; thus A is invariant under translations, rotations, etc.

Formally, the perceptron is defined as follows. Let R be a set of n binary inputs

(a formalized _retina'). A predicate _b over R is a mapping from assignments X of

the n input values into {0,1}, where 1 indicates concept membership (true) and 0

non-membership (false). Let • be a family of such predicates; a predicate F is said to

be linear with respect to • if there exist integers a÷ (one for each _ E _) and 8 such

that

÷EO

iff F(X) = 1. The complement of such _ function is also considered linear in _.

The family L(@)of functions linear with respect to @ is easy to realize in hard-

ware, provided • is not _too large _ and the individual predicates @ E • are not _too

complex" (terms to be made precise shortly). If the constant predicate I(X) = 1 is

among those in _, then we can always take 0 = 0.

Let • = (@i,_). The predicate @1 v _ is easy to realize by letting al = a2 = 1

and 0 = 0. To represent the predicate @1 A @2, let ai = a2 = 1 and 0 = 1. For -_@1,

set al = -1 and 0 = -1. In this manner one sees that any logical combination of the

predicates • can be obtained by a threshold network of sufficient depth; perceptrons,

however, are limited to a depth of one threshold unit.

The support of a predicate @(X) is the smallest set of input units in R upon which

depends. For example, the predicate Zl v (Zl A z_) has support (Zx). The class

known as the set of linear threohold funetior_ is L(_), where • is the set of predicates

{z [z E R_. A predicate of the form z_ I A... A z_ (k __ n) is called a mask of order

k. Since any predicate F can be written in disjunctive normal form, and -_z_ can be

realized by 1 - z_, every predicate F(X) over R is in L(M), where M is the set of

masks. This so-called positive normal form for F is unique. The order of a predicate

F is the maximum order of any mask in its positive normal form.

There are 2 n possible masks. Any function whose positive normal form requires a

substantial proportion of them surely cannot be considered realizable by perceptrons

except for very small n. For this reMon, functions of bounded order are of primary

interest. Feasibility also requires that the coefficients a and 0 be expressible with a

reasonable number of bits. Together, these conditions impose limits on what can be

feasibly represented with perceptrons. A well-known result of Minsky and Papert

[56] states that the parity (_an odd-number of bits in X are 1_) and connectedness

predicates are not computable by finite-order perceptrons. Less familiar, but equally

interesting, perceptron results are:

• The parity predicate requires fl(2 _) bits to represent the coefficients a.

• The counting predicates F,,L(X) = "exactly rn b_ts of R are one" are predicates

of order 2.

The "convex-figure" and _rectangular" predicates have order 3.

Many low-order predicates cease to have bounded order when generalized to

detect the property for some connected component of X. For example, "R

consists of a hollow square" is of finite order, but "R contains a hollow square"

is not.

Such results, and more significantly, the techniques developed to obtain such results,

help to understand the types of pattern concepts that can be represented by percep-

trons.

Given that a predicate is in L(_), how do we find a set of coefficients a_ for

it? (We assume henceforth that 0- 0.) The remarlmble pereeptron convergence

theorem of Rosenblatt states that a simple, intuitive, linear-feedback algorithm will

eventually convergeto a correct set of coef_cients. This theorem is noteworthy, not
becauseit is a learning algorithm -- after all, direct enumeration of the coefBcients

will eventually converge, too -- but because it is so simple, and because its running

time is approximately proportional to the sum of the values of the coefficients it finds.

In practice this is much faster on average than identification by enumeration.

A sketch of the algorithm is as follows. Examples are, again, points x = (zz,..., zn)

(with z_ E {0, I}), flagged + or - according to whether the target predicate is 1 or 0

on that point. The hypothesis maintained by the algorithm is represented by the set

of coefficients a_, for all 1 <_. i <_ n. (Recall that 0 = 0.) The value predicted by the

algorithm for the point x is the truth value (I or O) of the predicate: El a_(x) >

0. The teacher provides a counterexample to the current hypothesis as long as this

remains possible. The learning procedure is as follows:

1. Initialize o_ = 0 for 1 < i < n. (Actually the initial values can be arbitrary.)

2. For each counterexample:

2.1 If the example is positive +x, then for each i such that _,(x) = 1, increase

a_ by I. (Promotion step.)

2.2 If the example is negative -x, then for each i such that _b_(x) = 1, decrease

a/by 1. (Demotion step.)

The intuition behind the algorithm is immediate: for each counterexample, those

predicates _b_contributing to the error have their coefficient increased (if the false value

is 0) or decreased (if 1). The convergence theorem says that after a finite number of

counterexamples, the hypothesis will classify all points in R correctly, assuming that

the target hypothesis is in L(@). Note that exponentially many counterexamples may

be required -- e.g., if every perceptron representing the target has an exponentially

large coefficient (as does the parity predicate).

As discussed in the section on learnability, contemporary models of pattern dis-

crimination treat predicates over variables z that represent binary-coded attributes

("is red", "breathes fire") rather than pixel activation as in a retina. In such problems,

the geometry of the attributes is not a concern, and the predicates of interest are not

expected to be invariant under group action. The set • of basic predicates is viewed as

a set of abstract attributes, or/eatures, rather than masks. Once the set of features

has been chosen, the problem of learning L(_) is formally identical to the perceptron

learning problem, and Rosenblatt's algorithm can be used.

Recently Littlestone [55] has shown how the above learning algorithm can be im-

proved. Whereas the coefficients o_ in Rosenblatt's algorithm are incremented by a

constant amount (one) for each counterexample, in his algorithm they are multiplied

by a constant when too small and divided by the constant when too large. As a result

the convergence is potentially much faster. The price to be paid is that the program

must be given some information about the subclass of linearly separable functions

from which the target has been chosen. Call the function F E L(@) A-separable if

there exist coefficients o_ >_ 0 such that

o_b_(x) > 1 ifF(x) = 1,
i

<_ 1-A ifF(x)=O.

Then his algorithm converges to a solution whenever the target isA-separable, after

O((log./A 2) E_ o_) counterexamples, where. = [@1. Note that the resulting coeffi-

cientsare allpositive.Other classesof functions -- including those for which negative

coefficientsmay be necessary, mad even functions that are not in L(@) -- can be

learned by firstcarrying out a cha_nge of representation T :@ --,@' to a new family

of attributes defined in terms of the old, and running the learning algorithm for the

new fmmily. The resultingnetwork isa perceptron (over @') preceded by a circuitfor

carrying out the transformation T.

Another intriguing property of the Littlestone algorithm is this: when the car-

dinalityof the support (the minimum number of relevant attributes) of the target

predicate F issmall compared to n, the number of counterexamples required before

the algorithm converges may also be quite small (0 (log ,)). Many learning algorithms

run in time proportional to the total number of attributes (n), even when only a few of

those attributes are needed to define the concept. But the number of counterexamples

required by Littlestone's algorithm is 0 (log, _ o_). When most of the coefficients

o_ are zero and the others are bounded, 0 (log n) passes will be required. Thus for

an important class of concepts that depend on only a small subset of a much larger

collection of observed features, Littlestone's algorithm finds the target concept quickly

by identifying those few relevant features and suppressing the many irrelevant ones.

Linear programming techniques can also be used to solve perceptron learning prob-

lems. We can store all the examples the teacher has shown us and treat each example

as a constraint: _ o_@_(x) > 0 for a positive example, __ 0 for a negative one. We

then minimize _ o_ using our favorite algorithm (e.g., simplex). But this algorithm

stores all examples and constructs each new hypothesis from scratch rather than from

the existing one. Thus we are unlikelyto regard this %allistic" algorithm as a learning

algorithm, in the sense discussed [nthe introduction.

Multi-layer networks. By now perceptrons are fairlywell understood, but the class

of concepts that can be represented efiicientlywith a perceptron islimited. When we

generalizein the natural way -- by adding one or two additionallayersof units between

the inputs R and the output m we find that much lessisknown about the resulting

networks. Comparison iscomplicated by the fact that most of the problems studied

on these networks are trainingproblems rather than concept-learning problems.

First some terminology: An acyclicthreshold-logicnetwork has depth k when the

longest path from an input signalto the output passes through at most k threshold

units (we also say that the circuithas k layers). Thus a perceptron has unit depth.

When @ = {z_ 6 R}, a depth of three sufficesto realizeevery concept on R; we shall

assume henceforth that _ is this basic set. We also assume that there is a single

output unit. Threshold nodes other than the output unit(s)are often called hidden

units. Both the inputs z_ and outputs from hidden units are connected to threshold

nodes via weighted edges: juetMfor perceptrons. Weights and thresh°Ida can be

arbitrary real numbers (although integers generally suffice).A threshold unit with

inputs s_, weights _, and a threshold of 0 outputs 1 if _ o_s_ > 8 and 0 otherwise.

Figure 2: Two-input parity network. Thresholds are written in the nodes, weights

beside the eden.

To illustrate, in Figure 5 we show a network with depth 2 that computes the parity

function for m -- 2: F(xI,z2) = I iff zl _ z2.

A traimr_ problem consmts of a set 8 of examples of some function F(zl,..., z_),

with the examples labeled as + or - in the usual way. In general the set S is a

proper subset of all 2_ possible examples of the tarEet F. The task is to construct a

network that agrees with the examples by emitting I for each positive example and 0

for each negative example; for inputs not in $ the output may be arbitrary. From the

preceding sectkm on learnability theory, we recognise this as a consistency problem,

and know thaL if the examples have been selected randomly, and enough of them are

provided, then we have a PAC-learning problem. But here we are required only to

learn the set $.

The ironing problem has been shown to be NP-<omplete when the network con-

figuration is _ and the task k to choose the weights and thresholds. Thus, unlike

the simple perceptron training problem (which is essentially a linear programming

problem), the multi-layer training problem is unh'_ly to have any feasible algorithm

m incremental or ballistic. Is

In pursuix of an efficient algorithm we can try relaxing some of the requirement8

of the tralnln s problem. One is to require that it work for only some fraction of the

examples; but if that fraction is more than 2/3, the problem remains NP-complete

[44]. Another is to replace the linear-threshold function computed at each node by

some other hu_'xion. But if this is still a Boolean-valued function, the problem

intractable [42::.

Suppose the nodes are allowed to eompu_ a non-Boolean valued function. An

16D. tI,,_l_ (personal eommuie_ion) pointa ont thM, from • PAC-le_'ning l_r_eetive, the hard-
ness resultJ sutMus that multi-layer threshold networks pro_bly cannot learn (feasibly) the entire
clams of fucsioms thaL they can represent when examples c_m¢ from u arbitrary distribution. They

may, however, be able to]earn • useful subc]a4m, or perhajm the entire c]us ud_ • restricted set o/"
distributions.

exampleof such a function frequently used in practice is the so-called logiatic/unction

1
f(z1,...,z_ [al,...,o_,O,_) =

I -I- ezp[-_(E o_z_ - 0)]"

The function f approaches the standard threshold transfer function as 13 --* co, but

its output is always between zero and one. Complexity results for training with these

functions are not available, but there is little reason to suspect that using the logistic

transfer function in place of the O-threshold function will reduce the computational

complexity of the problem.

Another change that has been widely adopted is to replace the consistency criterion

by a lea_t-mean-squar¢ error (LMSE) procedure. This criterion is attractive in part

because it is meaningful for continuous transfer functions, while _consistency = is not.

Let F(x) (where x -= (zl,...,z_)) be the target function and H(x) the function

computed by the current hypothesis machine. The error Err of H over the sample S

is given by

Err(S) = _ [FCx) - HCx)]'.
XE$

We seek a hypothesis H for which Err(S) is minimum.

Apart from any question about the complexity of this optimization problem, we

should ask whether this is a good criterion. Of course, without any applications in

mind, all such judgments are subjective. But a recent paper [23] provides examples of

networks using logistic transfer functions, for which a consistent solution exists, and

yet the LMSE solution is inconsistent. Moreover the examples are for networks of unit

depth. In response to this and other evidence that the LMSE criterion and associated

hill-climbing algorithms may be unsuitable, still more modifications to the models are

being studied. But after nearly thirty years of research, an ideal learning algorithm

for threshold networks has yet to be found.

Sources. Historians will appreciate the view of connectionist AI in the early sixties

available from the collection [92]; the paper by Widrow [90] describing the Adaline

neural system is of particular interest. Early perceptron work is described in [70] and

[60].
The classic work on perceptron theory by Minsky and Papert dates from 1969, but

has been reissued with additional commentary [56]. A model of clarity and cogency,

this book is as significant today as it was when it first appeared.

Littlestone's perceptron algorithm is clearly presented in [55] and [54].

A popular source for multi-layer network studies, including the back-propagation

algorithm and the Boltzmann machine, is [71]. The intractability of training multi-

layer threshold networks was proved by Judd [43, 44]. An extremely simple 2-layer

3-node network that nevertheless is NP-complete to train is described in [18]. See

{23] for examples showing that least-mean-squared error algorithms can fail to find

solutions when those solutions exist. As I write this, new results are being reported

about the complexity of network learning (as distinct from training) in the PAC-

learnability model, along with other topics. One can anticipate rapid progress in this

field in the coming months and years.

Besides perceptrons, many other network modek with learning procedures have

been proposed and studied, both experimentally and theoretically. Among these are

genetic algorithms [38], "structural" connectionism [32], adaptive resonance [25], and

associative search networks [15].

6 Afterword

Control theory has produced a rich body of learning research that has not been in-

cluded in this survey, partly for lack of space and partly because the motivation for

this work comes from engineering rather than computer science. Nevertheless this

research, often described as _adaptive control systems analysis', probably deserves

the attention of learning theorists. Good starting places are the volumes by Tsypkin

[84, 85] and the collection [31].

7 Acknowledgments

I owe a large debt to the people who took time away from their busy schedules to read

drafts of this article, point out errors and offer suggestions: Peter Cheeseman, Silvano

Colombano, Peter Dunning, Lol Grant, David Haussler, Nick Littlestone, and John

Stutz. Any remaining errors are my responsibility. NASA's Ames Research Center

and the AI Research Group under Peter Friedland provided me with the opportunity,

incentive, and wherewithal to write this article.

References

[1] J. Aczdl. Lectures on Functional Equations and their Applications. Academic

Press, New York, 1966.

[2] Romas Aleliunas. A new normative theory of probabilistic logic. In Proceedings,

Canadian Society for Computational Studie_ of Intelligence, pages 67-74, 1988.

[3] Romas Aleliunas. A summary of a new normative theory of probabilistic logic.

In Proceedings Uncertainty in AI Workshop, pages 8-15, 1988.

[4] J. Amsterdam. Extending the valiant learning model. In Proceedings, Fifth In-

ternational Conference on Machine Learning, pages 381-394, 1988.

[5] D. Angluin. Learning regular sets from queries and counterexamples. Information

and Computation, 75:87-106, 1987.

[6] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning,

2:343-370, 1987.

[7] D. Angluin and C. Smith. Inductive inference: theory and methods. Comput.

Survevs, 15:237-269, 1983.

[8]

[9]

[10]

[11]

[12]

Dana Angluin. Equivalence queries and DNF formulo.s. Technical Re-

port YALEU/DCS/RR-659, Yale Univ. Dept. of Comp. Sci., 1988.

Dana Angluin. Identifying languages from stochastic ezamples. Technical Re-

port YALEU/DCS/RR-614, Yale University Dept. of Computer Science, 1988.

Dana Angluin. Learning k-bounded eontezt-free grammars. Technical Re-

port YALEU/DCS/RR-557, Yale Univ. Dept. of Comp. Sci., 1987.

Dana Angluin. Learning propositional Horn sentences with hints. Technical Re-

port YALEU/DCS/RR-590, Yale Univ. Dept. of Comp. Sci., 1987.

Dana Angluin. Negative results for equivalence queries. Technical Re-

port YALEU/DCS/RR-648, Yale Univ. Dept. of Comp. Sci., 1988.

[13] Dana Angluin. Queries and concept learning. Machine Learning, 2:319-342,

1987.

[14] R. Baxterji. The logic of learning. In Advances in Computers, pages 177 - 216,

Elsevier, 1985.

[15] A. Barto, R. Sutton, and P. Brouwer. Associative search networks: a reinforce-

ment learning associativememory. Biologicalc!/bernetics,40(2), 1981.

[16] James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-

Verlag, New York, 1980.

[17] James O. Berger and Donald A. Berry. Statisticalanalysis and the illusionof

objectivity. American Scientist, 76:159-165, 1988.

[18] A. Blum and R. Rivest. Training a 3-node neural network isNP-Complete. In

Proceedings, First Workshop on Computational Learning Theory, Kluwer Aca-

demic Press, 1988.

[19]

[2o]

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learn-

able geometric concepts with the Vapnik-Chervonenkis dimension. In Proe. 18th

Symposium on Theorlt of Computing, pages 273-282, ACM, 1986.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnabiiity and the

Vapnik-Chervonenkis dimension. Technical Report UCSC-CRL-87-20, University

of California, Santa Cruz, 1987. To appear in J. ACM.

[21] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam's razor. Inf.

Proc. Letters,24:377-380, 1987.

[22]

[23]

G. Box and G. Tiao. Bayesian Inference in Statistical Analysis. Addison-Wesley

Publishing Company, Reading, Ma.ssax.husetts, 1973.

M. Brady, R. Raghavan, and J. Slawny. Gradient descent fails to separate. In

Proc. _rtd Int. Cony. Neund Networks, pages 649 - 656, 1988.

124J W. Buntine. Generalized subsumptlon and its applications to induction and

redundancy. Artificial IrdeUigcnce, 36(2), 1988.

[25] G. Carpenter and S. Grossberg. Art 2: serf-organization of stable category recog-

nition codes for analog input patterns. Applied Optics, 26(3), 1987.

[26] P. C. Cheeseman. In defense of probability. In Proc. Ninth IJCAI, pages 1002-

1009, 1985.

[27] R.T. Cox. Probability, frequency, and reasonable expectation. American Journal

of Physics, 17:1-13, 1946.

[28] B. de Finetti. Theory of Probability. Wiley, New York, 1974.

[29] L. Devroye and T. J. Wagner. A distribution-free performance bound in error

estimation. IEEE Trans. In/o. Theory, IT-22:586-587, 1976.

[30] Richard O. Duda and Peter E. Hart. Pattern Recognition and Scene Analysis.

Wiley-lnterscience, 1973.

[31] K. S. Narendra (ed.). Adaptive and Learning Systems: Theory and Applications.

Plenum Press, 1986.

[32] J. Feldman and D. Ballard. Connectionist models and their properties. Cognitive

Science, 9:205-254, 1982.

[33] E. M. Gold. Language identification in the limit. Information and Control,

10:447--474, 1967.

[34] D. Haussler. Quantifying inductive biu: AI learning algorithms and Valiant's

learning framework. Artificial Intelligence, 36(2):177-222, 1988.

[35] D. Haussler and L. Pitt (eds.). Proceedings, 1st Computational Learning Theory

Workshop. Morgan Kaufmann, 1988.

[36] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of

models for polynomial learnability. In Proceedings, 1st Computational Learning

Theory Workshop, 1988.

[37] D. Haussler, N. Littlestone, and M. K. Waxmuth. Predicting {0,1)-functions on

randomly drawn points (extended abstract). In Proceedings, 1st Computational

Learning Theory Workshop, 1988.

[38] J. H. Holland. Escaping brittleness: the possibilities of general-purpose algo-

rithms applied to parallel rule-bMed systems. In R. S. Michalski et al., editor,

Machine Learning II, Morgan Kaufmann, 1986.

[39] H. Ishizsks. Model inference incorporating generalization. In Proc. Syrup. on

Software Science and Engineering, Kyoto, Sept., 1986.

[40] E. T. Jaynes. Papers on Probability, Statistics and Statistical Physics. Vol-

ume 158 of Synthese Library, D. Reidel, Boston, 1983.

[41] E. T. Jaynes. Prior probabilities. IEEE Transactions on Systems and Cybernet-

ics, SSC-4(3):227-241, September 1968. (Reprinted in [40]).

[42] E. T. Jaynes. The well-posed problem. Foundations of Physics, 3:447-493, 1973.

(Reprinted in [40]).

[43] J. S. Judd. Learning in networks is hard. In Proceedings, First International

Conference on Neural Networks, I.E.E.E., 1987.

[44]

[45]

J. S. Judd. Learning in neural networks (extended abstract). In Proceedings, First

Workshop on Computational Learning Theory, Kluwer Academic Press, 1988.

M. Kearns and M. Li. Learning in the presence of malicious errors. Technical

Report TR-03-87, Harvard University Aiken Computation Lab, 1987.

[46] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formulae.

In Proc. 19th ACM STOC, 1987.

[47] M. Kearns and L. Valiant. Learning Boolean Formulae or finite automata is as

hard as factoring. Technical Report TR 14-88, Harvard University, 1988.

[48]

[49[

[5o]

[51]

[52]

[53]

[54]

[55]

[56]

J. M. Keynes. A Treatise on Probability. MacMillan, London, 1921.

P. Laird. Efficient unsupervised learning. In Proc. Ist Comput. Learning Theory

Workshop, 1988.

P. Laird. Learning a probability distribution efficiently and reliably. Technical Re-

port RIA-88-10-10-0, NASA-Ames Research Center, AI Research Branch, 1988.

P. Laird. Learning by Making Models. Technical Report RIA-88-4-12-0, NASA-

Ames Research Center, AI Research Branch, 1988.

P. Laird. Learning from Good and Bad Data. Kluwer Academic, 1988.

N. Linial, Y. Mansour, and R. Rivest. Results on learnability and the Vapnik-

Chervonenkis dimension (extended abstract). In Proceedings, 1st Computational

Learning Theory Workshop, 1988.

N. Littlestone. Learning in a layered network with many fixed-function hidden

nodes. In Proc. 1st International Conference on Neural Nets, 1987.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new-linear

threshold algorithm. Machine Learnino, 2:285-318, 1987.

M. Minsky and S. Papert. Pereeptrons: an introduction to computational geom-

etry. M.I.T. Press, 1988. (expanded edition).

[57] B. Natarajan. Learnino functions from examples. Technical Report CMU-RL

TR-87-19, Carnegie-Mellon University Robotics Institute, 1987.

[58] B. Natarajan and P. Tadepalli. On learning boolean functions. In Proceedings,

igth ACM STOC, 1987.

[59] B. Natarajan and P. Tadepalli. Two new frameworks for learning. In Proceedings,

5th International Machine Learning Conference, pages 402--415, 1988.

[60] N. Nilsson. Learning Machines. McGraw-Hill, 1965.

[61] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1), 1986.

[62] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: an Introduction to

Learning Theory/or cognitive and computer scientists. M.I.T. Press, 1986.

[63] J. Pearl. Probabiliatie Reasoning in Intelligent Systems: Networks o/Plausible

Inference. Morgan Kaufmann, San Mateo, 1988.

[64] L. Pitt and L. Valiant. Computational limitatione on learning from examples.

J.ACM, 35:965-984, 1988.

[65] L. Pitt and M. Warmuth. The minimum consistent DFA problem cannot be

approximated within any polynomial. 1988. (preprint).
r

[66] L. Pitt and M. Warmuth. Reductions among prediction problems: on the dif-

ficulty of predicting automata. In Proc., _rd Structure in Complezity Theory

Workshop, 1988.

[67] R. L. Rivest. Learning decision lists. Machine Learning, 2(4):229-246, 1987.

[68] R. L. Rivest and R. E. Schapire. Diversity-based inference of finite automata. In

Proc. P.8_th FOCS, 1987.

[69] R. L. Rivest and R. E. Schapire. A new approach to unsupervised learning

in deterministic environments. In Proc. 4th Workshop on Machine Learning,

pages 364-375, 1987.

[70] F. Roeenblatt. Principles o/Neurodynamies: Pereeptrons and the Theory of Brain

Meehanisrns. Spartan Books, Washington, D.C., 1961.

[71] D. Rumelhart, J. McClelland, and the PDP Research Group. Parallel Distributed

Processing: Explorations in the microstrueture of cognition. M.I.T. Press, 1986.

(Two Volumes).

[72] Y. Sakakibara. Inductive inference of logic programs based on algebraic semantics.

Technical Report 79, International Institute for Advanced Study of Social Infor-

mation Science, Fujitsu Ltd., 140 Miyamoto, Numazu, Shizuoks 410-03 Japan,

1987.

[73]

[74]

[75]

Y. Sakakibara. Learning context-free grammars from structural data in polyno-

mial time. In Proc. 1st Workshop on Computational Learning Theory, 1988.

R. E. Schapire. Diversity-based inference oy finite automata. Technical Re-

port MIT/LCS/TR-413, M.I.T. Lab. for Computer Science, 1988.

G. Shackelford and D. Volper. Learning k-DNF with noise in the attributes. In

Proceedings, 1st Computational Learning Theory ,Workshop, 1988.

[76] E. Shapiro. Algorithmic program debugging. PhD thesis, Yale University Com-

puter Science Dept., 1982. Published by MIT Press, 1983.

[77] E. Shapiro. A general incremental algorithm that infers theories from facts. In

Seventh IJCAI, pages 446--451, IJCAI, 1981.

[78] E. Shapiro. Inductive inference of theories from facts. Technical Report, Yale

University Computer Science Dept., No. 192, 1981.

[79] J. E. Shore and R. W. Johnson. Axiomatic derivxtion of the principle of max-

imum entropy and the principle of minimum cross-entropy. IEEE Transactions

on Information Theory, IT-26:26-37, 1980.

[80] R. Sloan. Types of noise for concept learning. In Proceedings, 1st Computational

Learning Theory Work.shop, 1988.

[81] R. S. Sutton. Learning to predict by the methods of temporal differences. Ma-

chine Learning, 3:9-44, 1988.

[82] Y. Takada. A coastructive method for grammatical inference of linear languages

based on control sets. Technical Report 78, International Institute for Advanced

Study of Social Information Science, Fujitsu Ltd., 140 Miyamoto, Numazu,

Shizuoka 410-03 Japan, 1987.

[83] M. Tribus. Rational Descriptions, Decisions, and Designs. Pergamon Press,

Oxford, 1969.

[84] Ya.Z. Tsypkin. Adaptation and Learning in Control Systems. Academic Press,

1971.

[85] Ya.Z. Tsypkin. Foundations oy the Theory of Learning Systems. Academic Press,

1973.

[86] L. G.

pages

Valiant. Learning disjunctions of conjunctions.

560-566, IJCAI, 1985.

In Proceedings of IJCAI,

[87] L. G. Valiant. A theory of the learnable. C. ACM, 27:1134-1142, 1984.

[88] V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-

Verlag, 1982.

[89] V. Vapnik. Estimation ol Dependencies Based on Empirical Data. Springer-

Verlag, 1982.

[9o]B. Widrow. Generalization and information storage in networks of adaline neu-

rons. In Yovits et al., editor, Self-Organizing Systems, pages 435 - 448, Spartan

Books, 1962.

[91] T. Y. Young and T. W. Calvert. Classification, Estimation, and Pattern Recog-

nition. American Elsevier, 1974.

I921 M. C. Yovit_, G. Jacobi, and G. Goldstein (eds.). S_l[-Oroanizino Sllsterns. Spar-

tan Books, W_hington, DC, 1962.

AI R.ESEARCH BRANCH

NASA AMES RESEARCH CENTER

TECHNICAL REPORT LIST

MARCH 1992

RIA-88-12-05-$

Purposive Discovery
MICHAEL SIMS AND Jol

In the context of IL, a

method (calledGPP) for

the intended purpose of the

operator definitionfor

i8generalwith respectto the

of the operator.

Operator Definitions
BRESINA

system for mathematics, we describe our

discoveryof mathematical operators. This

operator. The implementation

Conway numbers. The GPP (G(

language,the specifi

December 1988

of a general

process is driven by

(re)discoveredthe correct

Prune and Prove) method

and the specifiedpurpose

RIA-88-12-05-4

Constraint Satisfaction With Delayed
MONTE ZWEBEN AND MEGAN ESKEY

This paper describesthe designand

evaluationtechniquestoprovidegreater
architectureused isa uniform

toprovidea globalsolution.We

problem as a constraint-satisfaction

December 1988

of a constraint satisfaction system which uses delayed

power and to avoid unnecessary computation. The
ion, where each constraint contributes its local information

tility of the system by formulating a real-world scheduling

RIA-89-01-01-03

A Study of for the Space

PETER FRIEDLAND January 1989

A rapid turnaround on the potentialuses of systems for Space Station Freedom

was conducted from October 1987 through January 1988. r_ticipants included both NASA personnel and

experienced industrialknowledge engineers.Major resultsof t_aestudy includedfiverecommended systems

for the Baseline Configurationofthe Space Station,an analys_ of sensorhooks and scars,and a proposed

plan forevolutionarygrowth of knowledge-based systems on theX_pace Station.

jRIA-89-01-07-0

A Survey of Computational Learning Theory
PHILIP LAIRD January 1989

This paper presentsan overview of formal learningtheory from four viewpoints: logic,Bayesian inference,

learnabilitytheory,and neuralnetworks.

4

REPORT DOCUMENTATION PAGE OMB No 0704-0188

oJOt,c reoon,ng burden cot this col_e_=on .of mfotmat_on s estimated to a_erage I hour per response, including the time for review,rig instruct.iOns, searching e_,s}_ng data _._Jr(_.

i_aTner_n_ and "aamtammg the data needed, and compiet ng and reviewing the c0Ilection of information. Send comments regarding this ouroen estimate or any o_ner aspect OT _.Js
colle<tlon of information, including suggestions for reducing this burden, tO Wash=nqt0n Headcl_a_ers Services, Directorate for .nformalion Operations and Reports, 1215 Jeffer_n

Davis High,ray Su;te 1204 Arfing_on _/A 22202-4302 and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20._03.

1. AGENCY USE ONLY (Leave blank) 2.. REPORT DATE 3. REPORT TYPE AND DATES COVERED
uates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Available for Public Distribution

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum2OOwords)

Abstracts ATTACHED

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

NSN 7540-01-280-5500

15. NUMBER OF PAGES

16. PRICE CODE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rew 2-89)
Prescribed by ANSI ¢_(d Z39-1B

298:102

